We present analytical and numerical techniques to accurately calculate the shifts in the natural frequencies of electrically actuated micro and nano (carbon nanotubes (CNTs)) cantilever beams implemented as resonant sensors for mass detection of biological entities, particularly Escherichia coli (E. coli) and prostate specific antigen (PSA) cells. The beams are modeled as Euler–Bernoulli beams, including the nonlinear electrostatic forces and the added biological cells, which are modeled as discrete point masses. The frequency shifts due to the added masses of the cells are calculated for the fundamental and higher-order modes of vibrations. Analytical expressions of the natural frequency shifts under a direct current (DC) voltage and an added mass have been developed using perturbation techniques and the Galerkin approximation. Numerical techniques are also used to calculate the frequency shifts and compared with the analytical technique. We found that a hybrid approach that relies on the analytical perturbation expression and the Galerkin procedure for calculating accurately the static behavior presents the most computationally efficient approach. We found that using higher-order modes of vibration of micro-electro-mechanical-system (MEMS) beams or miniaturizing the sizes of the beams to nanoscale leads to significant improved frequency shifts, and thus increased sensitivities.

References

References
1.
Bhattacharyya
,
P.
,
Basu
,
P.
,
Mondal
,
B.
, and
Saha
,
H.
,
2008
, “
A Low Power MEMS Gas Sensor Based on Nanocrystalline ZnO Thin Films for Sensing Methane
,”
Microelectron. Reliab.
,
48
(11–12), pp.
1772
1779
.
2.
Nayfeh
,
A. H.
,
Ouakad
,
H.
,
Najar
,
F.
,
Choura
,
S.
, and
Abdel-Rahman
,
E.
,
2010
, “
Nonlinear Dynamics of a Resonant Gas Sensor
,”
Nonlinear Dyn.
,
59
(
4
), pp.
607
618
.
3.
Li
,
X.
,
Yu
,
H.
,
Gan
,
X.
,
Xia
,
X.
,
Xu
,
P.
,
Li
,
J.
,
Liu
,
M.
, and
Li
,
Y.
,
2009
, “
Integrated MEMS/NEMS Resonant Cantilevers for Ultrasensitive Biological Detection
,”
J. Sens.
,
2009
, p.
637874
.
4.
Park
,
K.
,
Kim
,
N.
,
Morisette
,
D. T.
,
Aluru
,
N.
, and
Bashir
,
R.
,
2012
, “
Resonant MEMS Mass Sensors for Measurement of Microdroplet Evaporation
,”
J. Microelectromech. Syst.
,
21
(
3
), pp.
702
711
.
5.
Ramasamy
,
M.
,
Liang
,
C.
, and
Prorok
,
B.
,
2011
, “
Magneto-Mechanical MEMS Sensors for Bio-Detection
,”
SEM Annual Conference MEMS and Nanotechnology
, Indianapolis, IN, June 7–10, Vol.
2
, pp.
9
15
.
6.
Lavrik
,
N. V.
,
Sepaniak
,
M. J.
, and
Datskos
,
P. G.
,
2004
, “
Cantilever Transducers as a Platform for Chemical and Biological Sensors
,”
Rev. Sci. Instrum.
,
75
(
7
), pp.
2229
2253
.
7.
Waggoner
,
P. S.
, and
Craighead
,
H. G.
,
2007
, “
Micro-and Nanomechanical Sensors for Environmental, Chemical, and Biological Detection
,”
Lab Chip
,
7
(
10
), pp.
1238
1255
.
8.
Suja
,
K.
,
Raveendran
,
E. S.
, and
Komaragiri
,
R.
,
2013
, “
Investigation on Better Sensitive Silicon Based MEMS Pressure Sensor for High Pressure Measurement
,”
Int. J. Comput. Appl.
,
72
(
8
), pp.
40
47
.
9.
Ganesan
,
A. V.
,
2013
, “
A Novel MEMS Based Immunosensor for Ebola Virus Detection
,”
ASME
Paper No. IMECE2013-66025.
10.
Gau
,
J.-J.
,
Lan
,
E. H.
,
Dunn
,
B.
,
Ho
,
C.-M.
, and
Woo
,
J. C.
,
2001
, “
A MEMS Based Amperometric Detector for E. Coli Bacteria Using Self-Assembled Monolayers
,”
Biosens. Bioelectron.
,
16
(9–12,), pp.
745
755
.
11.
Ilic
,
B.
,
Czaplewski
,
D.
,
Zalalutdinov
,
M.
,
Craighead
,
H.
,
Neuzil
,
P.
,
Campagnolo
,
C.
, and
Batt
,
C.
,
2001
, “
Single Cell Detection With Micromechanical Oscillators
,”
J. Vac. Sci. Technol., B
,
19
(
6
), pp.
2825
2828
.
12.
Park
,
K.
,
Millet
,
L. J.
,
Kim
,
N.
,
Li
,
H.
,
Jin
,
X.
,
Popescu
,
G.
,
Aluru
,
N. R.
,
Hsiab
,
K. J.
, and
Bashira
,
R.
,
2010
, “
Measurement of Adherent Cell Mass and Growth
,”
Proc. Natl. Acad. Sci. U.S.A.
,
107
(
48
), pp.
20691
20696
.
13.
Yang
,
Y. T.
,
Callegari
,
C.
,
Feng
,
X. L.
,
Ekinci
,
K. L.
, and
Roukes
,
M. L.
,
2011
, “
MEMS Mass Sensors With Uniform Sensitivity for Monitoring Cellular Apoptosis
,”
Solid-State Sensors, Actuators and Microsystems Conference
(
TRANSDUCERS
), Beijing, June 5–9, pp.
759
762
.
14.
Wu
,
G.
,
Datar
,
R. H.
,
Hansen
,
K. M.
,
Thundat
,
T.
,
Cote
,
R. J.
, and
Majumdar
,
A.
,
2001
, “
Bioassay of Prostate-Specific Antigen (PSA) Using Microcantilevers
,”
Nat. Biotechnol.
,
19
(
9
), pp.
856
860
.
15.
Carrascosa
,
L. G.
,
Moreno
,
M.
,
Álvarez
,
M.
, and
Lechuga
,
L. M.
,
2006
, “
Nanomechanical Biosensors: A New Sensing Tool
,”
TrAC, Trends Anal. Chem.
,
25
(
3
), pp.
196
206
.
16.
Lavrik
,
N. V.
, and
Datskos
,
P. G.
,
2003
, “
Femtogram Mass Detection Using Photothermally Actuated Nanomechanical Resonators
,”
Appl. Phys. Lett.
,
82
(
16
), pp.
2697
2699
.
17.
Hansen
,
K. M.
, and
Thundat
,
T.
,
2005
, “
Microcantilever Biosensors
,”
Methods
,
37
(
1
), pp.
57
64
.
18.
Raiteri
,
R.
,
Grattarola
,
M.
,
Butt
,
H.-J.
, and
Skládal
,
P.
,
2001
, “
Micromechanical Cantilever-Based Biosensors
,”
Sens. Actuators, B
,
79
(2–3), pp.
115
126
.
19.
Dohn
,
S.
,
Sandberg
,
R.
,
Svendsen
,
W.
, and
Boisen
,
A.
,
2005
, “
Enhanced Functionality of Cantilever Based Mass Sensors Using Higher Modes
,”
Appl. Phys. Lett.
,
86
(
23
), p.
233501
.
20.
Younis
,
M. I.
, and
Alsaleem
,
F.
,
2009
, “
Exploration of New Concepts for Mass Detection in Electrostatically-Actuated Structures Based on Nonlinear Phenomena
,”
ASME J. Comput. Nonlinear Dyn.
,
4
(
2
), p.
021010
.
21.
Tseytlin
,
Y. M.
,
2005
, “
High Resonant Mass Sensor Evaluation: An Effective Method
,”
Rev. Sci. Instrum.
,
76
(
11
), p.
115101
.
22.
Kumar
,
V.
,
Yang
,
Y.
,
Boley
,
J. W.
,
Chiu
,
G. T.-C.
, and
Rhoads
,
J. F.
,
2012
, “
Modeling, Analysis, and Experimental Validation of a Bifurcation-Based Microsensor
,”
J. Microelectromech. Syst.
,
21
(
3
), pp.
549
558
.
23.
Schedin
,
F.
,
Geim
,
A.
,
Morozov
,
S.
,
Hill
,
E.
,
Blake
,
P.
,
Katsnelson
,
M.
, and
Novoselov
,
K. S.
,
2007
, “
Detection of Individual Gas Molecules Adsorbed on Graphene
,”
Nat. Mater.
,
6
(
9
), pp.
652
655
.
24.
Arash
,
B.
, and
Wang
,
Q.
,
2013
, “
Detection of Gas Atoms With Carbon Nanotubes
,”
Sci. Rep.
,
3
, p. 1782.
25.
Muünzer
,
A. M.
,
Michael
,
Z. P.
, and
Star
,
A.
,
2013
, “
Carbon Nanotubes for the Label-Free Detection of Biomarkers
,”
ACS Nano
,
7
(
9
), pp.
7448
7453
.
26.
Souayeh
,
S.
, and
Kacem
,
N.
,
2014
, “
Computational Models for Large Amplitude Nonlinear Vibrations of Electrostatically Actuated Carbon Nanotube-Based Mass Sensors
,”
Sens. Actuators, A
,
208
, pp.
10
20
.
27.
Chaste
,
J.
,
Eichler
,
A.
,
Moser
,
J.
,
Ceballos
,
G.
,
Rurali
,
R.
, and
Bachtold
,
A.
,
2012
, “
A Nanomechanical Mass Sensor With Yoctogram Resolution
,”
Nat. Nanotechnol.
,
7
(
5
), pp.
301
304
.
28.
Elishakoff
,
I.
,
Versaci
,
C.
,
Maugeri
,
N.
, and
Muscolino
,
G.
,
2011
, “
Clamped-Free Single-Walled Carbon Nanotube-Based Mass Sensor Treated as Bernoulli–Euler Beam
,”
J. Nanotechnol. Eng. Med.
,
2
(
2
), p.
021001
.
29.
Younis
,
M. I.
,
2011
,
MEMS Linear and Nonlinear Statics and Dynamics
,
Springer
,
New York
.
30.
Ouakad
,
H. M.
, and
Younis
,
M. I.
,
2010
, “
Nonlinear Dynamics of Electrically Actuated Carbon Nanotube Resonators
,”
ASME J. Comput. Nonlinear Dyn.
,
5
(
1
), p.
011009
.
31.
Ouakad
,
H. M.
, and
Younis
,
M. I.
,
2010
, “
The Dynamic Behavior of MEMS Arch Resonators Actuated Electrically
,”
Int. J. Non-Linear Mech.
,
45
(
7
), pp.
704
713
.
32.
Younis
,
M. I.
,
Abdel-Rahman
,
E. M.
, and
Nayfeh
,
A.
,
2003
, “
A Reduced-Order Model for Electrically Actuated Microbeam-Based MEMS
,”
J. Microelectromech. Syst.
,
12
(
5
), pp.
672
680
.
33.
Aboelkassem
,
Y.
,
Nayfeh
,
A. H.
, and
Ghommem
,
M.
,
2010
, “
Bio-Mass Sensor Using an Electrostatically Actuated Microcantilever in a Vacuum Microchannel
,”
Microsyst. Technol.
,
16
(
10
), pp.
1749
1755
.
34.
Nayfeh
,
A. H.
,
1981
,
Introduction to Perturbation Methods
,
Wiley
,
New York
.
35.
Fredholm
,
I.
,
1903
, “
Sur une classe d’équations fonctionnelles
,”
Acta Math.
,
27
(
1
), pp.
365
390
.
36.
Li
,
M.
,
Tang
,
H. X.
, and
Roukes
,
M. L.
,
2007
, “
Ultra-Sensitive NEMS-Based Cantilevers for Sensing, Scanned Probe and Very High-Frequency Applications
,”
Nat. Nanotechnol.
,
2
(
2
), pp.
114
120
.
37.
Abdel-Rahman
,
E. M.
,
Younis
,
M. I.
, and
Nayfeh
,
A. H.
,
2002
, “
Characterization of the Mechanical Behavior of an Electrically Actuated Microbeam
,”
J. Micromech. Microeng.
,
12
(
6
), p.
759
.
38.
Xu
,
T.
, and
Younis
,
M. I.
,
2015
, “
Nonlinear Dynamics of Carbon Nanotubes Under Large Electrostatic Force
,”
ASME J. Comput. Nonlinear Dyn.
, 11(2), p. 021009.
39.
Gabrielson
,
B.
,
1993
, “
Mechanical–Thermal Noise in Acoustic and Vibration Sensors
,”
IEEE Trans. Electron Devices
,
40
(
5
), pp.
903
909
.
You do not currently have access to this content.