This paper analyzes the impact a planar robotic tail can have on the yaw-angle maneuvering of a quadruped robot. Tail structures ranging from a one degree-of-freedom (1DOF) pendulum to a 6DOF serpentine robot are simulated, along with a quadruped model that accounts for ground contact friction. Tail trajectory generation using split-cycle frequency modulation is used to improve net quadruped rotation due to the tail's motion. Numerical results from the tail and quadruped models analyze the impact of trajectory factors and tail structure on the net quadruped rotation. Results emphasize the importance of both tangential and centripetal tail loading for tail trajectory planning and show the benefit of a multi-DOF tail.

References

References
1.
Wilson
,
A. M.
,
Lowe
,
J. C.
,
Roskilly
,
K.
,
Hudson
,
P. E.
,
Golabek
,
K. A.
, and
McNutt
,
J. W.
,
2013
, “
Locomotion Dynamics of Hunting in Wild Cheetahs
,”
Nature
,
498
(
7453
), pp.
185
189
.
2.
Jusufi
,
A.
,
Kawano
,
D. T.
,
Libby
,
T.
, and
Full
,
R. J.
,
2010
, “
Righting and Turning in Mid-Air Using Appendage Inertia: Reptile Tails, Analytical Models and Bio-Inspired Robots
,”
Bioinspiration Biomimetics
,
5
(
4
), p.
045001
.
3.
Fish
,
F. E.
,
Bostic
,
S. A.
,
Nicastro
,
A. J.
, and
Beneski
,
J. T.
,
2007
, “
Death Roll of the Alligator: Mechanics of Twist Feeding in Water
,”
J. Exp. Biol.
,
210
(
16
), pp.
2811
2818
.
4.
Walker
,
C.
,
Vierck
,
C. J.
, Jr.
, and
Ritz
,
L. A.
,
1998
, “
Balance in the Cat: Role of the Tail and Effects of Sacrocaudal Transaction
,”
Behav. Brain Res.
,
91
(
1–2
), pp.
41
47
.
5.
O'Connor
,
S. M.
,
Dawson
,
T. J.
,
Kram
,
R.
, and
Donelan
,
J. M.
,
2014
, “
The Kangaroo's Tail Propels and Powers Pentapedal Locomotion
,”
Biol. Lett.
,
10
(
7
), p.
20140381
.
6.
Bezanson
,
M.
,
2012
, “
The Ontogeny of Prehensile-Tail Use in Cebus capucinus and Alouatta palliata
,”
Am. J. Primatol.
,
74
(
8
), pp.
770
782
.
7.
Johnson
,
A. M.
,
Libby
,
T.
,
Chang-Siu
,
E.
,
Tomizuka
,
M.
,
Full
,
R. J.
, and
Koditschek
,
D. E.
,
2012
, “
Tail Assisted Dynamic Self Righting
,”
Conference on Climbing and Walking Robots and Support Technologies for Mobile Machines
, Baltimore, MD, pp.
611
620
.
8.
Chang-Siu
,
E.
,
Libby
,
T.
,
Tomizuka
,
M.
, and
Full
,
R. J.
,
2011
, “
A Lizard-Inspired Active Tail Enables Rapid Maneuvers and Dynamic Stabilization in a Terrestrial Robot
,”
IEEE/RSJ
International Conference on Intelligent Robots and Systems
, San Francisco, CA, Sept. 25–30, pp.
1887
1894
.
9.
Zhao
,
J.
,
Zhao
,
T.
,
Xi
,
N.
,
Cintron
,
F. J.
,
Mutka
,
M. W.
, and
Xiao
,
L.
,
2013
, “
Controlling Aerial Maneuvering of a Miniature Jumping Robot Using Its Tail
,”
IEEE/RSJ
International Conference on Intelligent Robots and Systems
, Tokyo, Japan, Nov. 3–7, pp.
3802
3807
.
10.
Liu
,
G.-H.
,
Lin
,
H.-Y.
,
Lin
,
H.-Y.
,
Chen
,
S.-T.
, and
Lin
,
P.-C.
,
2014
, “
A Bio-Inspired Hopping Kangaroo Robot With an Active Tail
,”
J. Bionics Eng.
,
11
(
4
), pp.
541
555
.
11.
He
,
G.
, and
Geng
,
Z.
,
2009
, “
Exponentially Stabilizing an One-Legged Hopping Robot With Non-SLIP Model in Flight Phase
,”
Mechatronics
,
19
(
3
), pp.
364
374
.
12.
Berenguer
,
F. J.
, and
Monasterio-Huelin
,
F. M.
,
2008
, “
Zappa, a Quasi-Passive Biped Walking Robot With a Tail: Modeling, Behavior, and Kinematic Estimation Using Accelerometers
,”
IEEE Trans. Ind. Electron.
,
55
(
9
), pp.
3281
3289
.
13.
Provancher
,
W. R.
,
Jensen-Segal
,
S. I.
, and
Fehlberg
,
M. A.
,
2011
, “
ROCR: An Energy-Efficient Dynamic Wall-Climbing Robot
,”
IEEE/ASME Trans. Mechatron.
,
16
(
5
), pp.
897
906
.
14.
Patel
,
A.
, and
Braae
,
M.
,
2013
, “
Rapid Turning at High-Speed: Inspirations From the Cheetah's Tail
,”
IEEE/RSJ
International Conference on Intelligent Robots and Systems
, Tokyo, Japan, Nov. 3–7, pp.
5506
5511
.
15.
Casarez
,
C.
,
Penskiy
,
I.
, and
Bergbreiter
,
S.
,
2013
, “
Using an Inertial Tail for Rapid Turns on a Miniature Legged Robot
,”
IEEE
International Conference on Robotics and Automation
, Karlsruhe, Germany, May 6–10, pp.
5469
5474
.
16.
Patel
,
A.
, and
Braae
,
M.
,
2014
, “
Rapid Acceleration and Braking: Inspiration From the Cheetah's Tail
,”
IEEE
International Conference on Robotics and Automation
, Hong Kong, China, May 31–June 7, pp.
793
799
.
17.
Park
,
H. S.
,
Floyd
,
S.
, and
Sitti
,
M.
,
2009
, “
Roll and Pitch Motion Analysis of a Biologically Inspired Quadruped Water Runner Robot
,”
Int. J. Rob. Res.
,
29
(
10
), pp.
1281
1297
.
18.
Briggs
,
R.
,
Lee
,
J.
,
Haberland
,
M.
, and
Kim
,
S.
,
2012
, “
Tails in Biomimetic Design: Analysis, Simulation, and Experiment
,”
IEEE/RSJ
International Conference on Intelligent Robots and Systems
, Vilamoura, Algarve, Portugal, Oct. 7–12, pp.
1473
1480
.
19.
Mutka
,
A.
,
Orsag
,
M.
, and
Kovacic
,
Z.
,
2013
, “
Stabilizing a Quadruped Robot Locomotion Using a Two Degree of Freedom Tail
,”
21st Mediterranean Conference on Control and Automation
, Platanias-Chania, Greece, June 25–28, pp.
1336
1342
.
20.
Rone
,
W. S.
, and
Ben-Tzvi
,
P.
,
2016
, “
Serpentine Tail Control for Maneuvering and Stabilization of a Quadrupedal Robot
,” ASME International Design Engineering Technical Conference & Computers and Information in Engineering Conference, Charlotte, NC (under review).
21.
Rone
,
W. S.
, and
Ben-Tzvi
,
P.
,
2015
, “
Static Modeling of a Multi-Segment Serpentine Robotic Tail
,”
ASME
Paper No. DETC2015-46655.
22.
Rone
,
W. S.
, and
Ben-Tzvi
,
P.
,
2014
, “
Continuum Robot Dynamics Utilizing the Principle of Virtual Power
,”
IEEE Trans. Robot.
,
30
(
1
), pp.
275
287
.
23.
Rone
,
W. S.
, and
Ben-Tzvi
,
P.
,
2014
, “
Mechanics Modeling of Multisegment Rod-Driven Continuum Robots
,”
ASME J. Mech. Rob.
,
6
(
4
), p.
041006
.
24.
Doman
,
D. B.
,
Oppenheimer
,
M. W.
, and
Sigthorsson
,
D. O.
,
2010
, “
Wingbeat Shape Modulation for Flapping-Wing Micro-Air-Vehicle Control During Hover
,”
J. Guid. Control Dyn.
,
33
(
3
), pp.
724
739
.
You do not currently have access to this content.