Current research in offshore wind turbines is proposing a novel concept of using seawater-based hydraulics for large-scale power transmission and centralized electrical generation. The objective of this paper is to investigate the control of such an open-loop circuit, where a fixed line pressure is desirable for the sake of efficiency and stability. Pressure control of the open-loop hydraulic circuit presents an interesting control challenge due to the highly fluctuating flow rate along with the nonlinear behavior of the variable-area orifice used by the pressure controller. The present analysis is limited to a single turbine and an open-loop hydraulic line with a variable-area orifice at the end. A controller is proposed which uses a combination of feed-forward compensation for the nonlinear part along with a feedback loop for correcting any errors resulting from inaccuracies in the compensator model. A numerical model of the system under investigation is developed in order to observe the behavior of the controller and the advantages of including the feedback loop. An in-depth analysis is undertaken, including a sensitivity study of the compensator accuracy and a parametric analysis of the actuator response time. Finally, a Monte Carlo analysis was carried out in order to rank the proposed controller in comparison to a simple feed-forward controller and a theoretical optimally tuned controller. Results indicate an advantageous performance of the proposed method of feedback with feed-forward compensation, particularly its ability to maintain a stable line pressure in the face of high parameter uncertainty over a wide range of operating conditions, even with a relatively slow actuation system.

References

References
1.
Global Wind Energy Council
,
2014
, “
Global Wind Statistics 2013
,” GWEC.
2.
Ragheb
,
A. M.
, and
Ragheb
,
M.
,
2011
, “
Wind Turbine Gearbox Technologies
,”
Fundamentals and Advanced Topics in Wind Power
, pp.
189
206
.
3.
Diepeveen
,
N.
,
2013
, “
On the Application of Fluid Power Transmission in Offshore Wind Turbines
,”
Ph.D. thesis
, Delft University of Technology, Delft, Netherlands.
4.
Sheng
,
S.
,
2011
, “
Investigation of Various Wind Turbine Drivetrain Condition Monitoring Techniques
,”
Wind Turbine Reliability Workshop
, Albuquerque, NM, Aug. 2–3,Report No. NREL/PR-5000-52352.
5.
Troszkiewicz
,
A.
,
2012
, “
Copper Use for Wind Power, Infrastructure Seen Aiding Demand
,”
Bloomberg
, New York.
6.
Henderson
,
A.
,
Gleeson
,
M.
,
Kaufmes
,
U.
,
Jacquemin
,
J.
, and
Morgan
,
C.
, “
Offshore Wind Due Diligence—How Country, and Life-Cycle Stage, Impacts What to Look For
,” European Wind Energy Conference, Marseille, France, Vol. 1, pp.
5003
5009
.
7.
Jiang
,
Z.
,
Yang
,
L.
,
Gao
,
Z.
, and
Moan
,
T.
,
2014
, “
Numerical Simulation of a Wind Turbine With a Hydraulic Transmission System
,”
Energy Procedia
,
53
, pp.
44
55
.
8.
Salter
,
H. S.
, and
Rea
,
M.
,
1985
, “
Hydraulics for Wind
,”
European Wind Energy Conference
, Hamburg, pp.
534
541
.
9.
Hossain
,
M. M.
, and
Hasan
,
A. M.
,
2015
, “
Future Research Directions for the Wind Turbine Generator System
,”
Renewable Sustainable Energy Rev.
,
49
(
9
), pp.
481
489
.
10.
Jones
,
J. A.
,
Bruce
,
A.
, and
Lam
,
A. S.
,
2013
, “
Advanced Performance Hydraulic Wind Energy
,”
IEEE
Green Technologies Conference, Denver, CO, Apr. 4–5, pp.
140
146
.
11.
Izadian
,
A.
,
Hamzehlouia
,
S.
,
Girrens
,
N.
, and
Anwar
,
S.
,
2011
, “
Modeling of Gearless Wind Power Transfer
,”
IECON
2011—37th Annual Conference of the IEEE Industrial Electronics Society
, Melbourne, Australia, Nov. 7–10, pp.
3176
3179
.
12.
Skaare
,
B.
,
Horsten
,
B.
, and
Nielsen
,
F. G.
,
2012
, “
Modeling, Simulation and Control of a Wind Turbine With a Hydraulic Transmission System
,”
Wind Energy
,
16
, pp.
1259
1276
.
13.
Schulte
,
H.
, and
Georg
,
S.
,
2014
, “
Nonlinear Control of Wind Turbines With Hydrostatic Transmission Based on Takagi–Sugeno Model
,”
J. Phys.: Conf. Ser.
,
524
(
1
), p.
012085
.
14.
Wang
,
F.
, and
Stelson
,
K. A.
,
2013
, “
Model Predictive Control for Power Optimization in a Hydrostatic Wind Turbine
,”
13th Scandinavian International Conference on Fluid Power
, Linköping, Sweden, June 3–5, pp.
155
160
.
15.
Artemis Intelligent Power
,
2013
, “
Applications: Wind Turbines
,” http://www.artemisip.com/applications/wind-turbines
16.
Yang
,
L.
,
Jiang
,
Z.
,
Gao
,
Z.
, and
Moan
,
T.
,
2015
, “
Dynamic Analysis of a Floating Wind Turbine With a Hydraulic Transmission System
,”
25th International Offshore and Polar Engineering Conference
,
Kona, HI
, June 21–26, pp.
455
462
.
17.
Innes-Wimsatt
,
E.
,
Qin
,
C.
, and
Loth
,
E.
,
2014
, “
Economic Benefits of Hydraulic-Electric Hybrid Wind Turbines
,”
Int. J. Environ. Stud.
,
71
(
6
), pp.
812
827
.
18.
Li
,
P. Y.
,
Loth
,
E.
,
Simon
,
T. W.
,
Van de Ven
,
J. D.
, and
Crane
,
S. E.
,
2011
, “
Compressed Air Energy Storage for Offshore Wind Turbines
,”
International Fluid Power Exposition
(
IFPE
).
19.
Laguna
,
A. J.
,
2014
, “
Fluid Power Network for Centralized Electricity Generation in Offshore Wind Farms
,”
J. Phys.: Conf. Ser.
,
524
, p.
012075
.
20.
Laguna
,
A. J.
,
2015
, “
Modeling and Analysis of an Offshore Wind Turbine With Fluid Power Transmission for Centralised Electricity Generation
,”
ASME J. Comput. Non-Linear Dyn.
,
10
(
4
), p.
041002
.
21.
Dixon
,
S. L.
,
1998
,
Fluid Mechanics and Thermodynamics of Turbomachinery
,
5th ed.
,
Elsevier
,
Oxford, UK
.
22.
Puleva
,
T.
, and
Ichtev
,
A.
,
2008
, “
Adaptive Multiple Model Algorithm for Hydro Generator Speed and Power Control
,”
Control of Power Plants
.
23.
Parker
,
M.
, and
Anaya-Lara
,
O.
,
2013
, “
Cost and Losses Associated With Offshore Wind Farm Collection Networks Which Centralise the Turbine Power Electronic Converters
,”
IET Renewable Power Gener.
,
7
(
4
), pp.
390
400
.
24.
Jonkman
,
J.
,
Butterfield
,
S.
,
Musial
,
W.
, and
Scott
,
G.
,
2009
, “
Definition of a 5-MW Reference Wind Turbine for Offshore System Development
,” National Renewable Energy Laboratory,
Report No. NREL/TP-500-38060
.
25.
Grunnet
,
J. D.
,
Soltani
,
M.
,
Knudsen
,
T.
,
Kragelund
,
M.
, and
Bak
,
T.
,
2010
, “
Aeolus Toolbox for Dynamics Wind Farm Model, Simulation and Control
,”
EWEC
,
Warsaw
,
Poland
, pp.
3119
3129
.
26.
Silva
,
P.
,
Giuffrida
,
A.
,
Fergnani
,
N.
,
Macchi
,
E.
,
Cantù
,
M.
,
Suffredini
,
R.
,
Schiavetti
,
M.
, and
Gigliucci
,
G.
,
2014
, “
Performance Prediction of a Multi-MW Wind Turbine Adopting an Advanced Hydrostatic Transmission
,”
Energy
,
64
(
1
), pp.
450
461
.
27.
Kempenaar
,
A.
,
2012
, “
Small Scale Fluid Power Transmission for the Delft Offshore Turbine
,”
M.Sc. thesis
, Delft University of Technology, Delft, Netherlands.
28.
Merritt
,
H. E.
,
1967
,
Hydraulic Control Systems
,
Wiley
,
New York
.
29.
White
,
F. M.
,
1991
,
Viscous Fluid Flow
,
McGraw-Hill
,
New York
.
30.
White
,
F. M.
,
1998
,
Fluid Mechanics
,
4th ed.
,
McGraw-Hill
,
New York
.
31.
Larock
,
B. E.
,
Jeppson
,
R. W.
, and
Watters
,
G. Z.
,
1999
,
Hydraulics of Pipeline Systems
,
CRC Press
,
Boca Raton
.
32.
Karadzic
,
U.
,
Bergant
,
A.
, and
Vukoslavcevic
,
P.
,
2009
, “
Water Hammer Effects During Pelton Turbine Load Rejection
,”
3rd IAHR International Meeting of the Workgroup on Cavitation and Dynamic Problems in Hydraulic Machinery and Systems
, pp.
443
452
.
33.
Pisano
,
A.
, and
Usai
,
E.
,
2014
, “
Output-Feedback Control of an Underwater Vehicle Prototype by Higher-Order Sliding Modes
,”
Automatica
,
40
, pp.
1525
1531
.
34.
Manwell
,
J.
,
McGowan
,
J.
, and
Rogers
,
A.
,
2012
,
Wind Energy Explained, Theory, Design and Application
,
Wiley
,
New York.
35.
Buhagiar
,
D.
, and
Sant
,
T.
,
2014
, “
Steady-State Analysis of a Conceptual Offshore Wind Turbine Driven Electricity and Thermocline Energy Extraction Plant
,”
Renewable Energy
,
68
, pp.
853
867
.
36.
Isermann
,
R.
,
1996
, “
Information Processing for Mechatronic Systems
,”
Rob. Auton. Syst.
,
19
(
2
), pp.
117
134
.
37.
Grepl
,
R.
, and
Lee
,
B.
,
2010
, “
Modeling, Parameter Estimation and Nonlinear Control of Automotive Electronic Throttle Using a Rapid-Control Prototyping Technique
,”
Int. J. Automot. Technol.
,
11
(
4
), pp.
601
610
.
38.
Voith Turbo GmbH & Co.
,
2014
, Servomotors Used for Driving Control Valves (Online), http://www.voith.com
39.
Field
,
A.
,
2013
,
Discovering Statistics Using IBM SPSS Statistics
,
SAGE
,
London
.
You do not currently have access to this content.