In this paper, we present an observer design for online estimation of species concentrations in recirculation-based solid oxide fuel cell (SOFC) systems with integrated reformers. For the system considered, on-board reforming of methane results in mixture of several species of different concentrations along the fuel path. The presence of a fuel reformer gives way to coupling of system equations, in turn, increasing species interactions and complexity of the state equations. The knowledge of concentration of species at key locations in the fuel cell can help prevent cell damage and improve longevity. In this regard, the use of sensors to determine species concentration is an invasive process which is expensive to both utilize and maintain. While existing observers are designed either for chemical reactors or for a fuel cell exclusively, the proposed strategy aims to improve on that by considering a combined reformer and fuel cell and designing a nonlinear adaptive observer using readily measured concentrations and selected variables. For estimating certain critical indicators, such as fuel utilization, state transformations have been used in the design to obtain a more versatile and computationally efficient reduced order observer. The study develops detailed stability analysis of the observers and quantifies the effect of uncertainties on observer performance.

References

References
1.
Mueller
,
F.
,
Brouwer
,
J.
,
Jabbari
,
F.
, and
Samuelsen
,
S.
,
2006
, “
Dynamic Simulation of an Integrated Solid Oxide Fuel Cell System Including Current-Based Fuel Flow Control
,”
ASME J. Fuel Cell Sci. Technol.
,
3
(
2
), pp.
144
154
.
2.
Ferrari
,
M. L.
,
Traverso
,
A.
,
Magistri
,
L.
, and
Massardo
,
A. F.
,
2005
, “
Influence of Anodic Recirculation Transient Behavior on the SOFC Hybrid System Performance
,”
J. Power Sources
,
149
, pp.
22
32
.
3.
Kandepu
,
R.
,
Imsland
,
L.
,
Foss
,
B. A.
,
Stiller
,
C.
,
Thorud
,
B.
, and
Bolland
,
O.
,
2007
, “
Modeling and Control of a SOFC-GT-Based Autonomous Power System
,”
Energy
,
32
(
4
), pp.
406
417
.
4.
Xu
,
J.
, and
Froment
,
G. F.
,
1989
, “
Methane Steam Reforming, Methanation and Water-Gas Shift: I. Intrinsic Kinetics
,”
AIChE J.
,
35
(
1
), pp.
88
96
.
5.
Hall
,
D. J.
, and
Colclaser
,
R. G.
,
1999
, “
Transient Modeling and Simulation of a Tubular Solid Oxide Fuel Cell
,”
IEEE Trans. Energy Convers.
,
14
(
3
), pp.
749
753
.
6.
Lazzaretto
,
A.
,
Toffolo
,
A.
, and
Zanon
,
F.
,
2004
, “
Parameter Setting for a Tubular SOFC Simulation Model
,”
ASME J. Energy Resour. Technol.
,
126
(
1
), pp.
40
46
.
7.
Li
,
P.
, and
Chyu
,
M. K.
,
2003
, “
Simulation of the Chemical/Electrochemical Reactions and Heat/Mass Transfer for a Tubular SOFC in a Stack
,”
J. Power Sources
,
124
(
2
), pp.
487
498
.
8.
Xue
,
X.
,
Tang
,
J.
,
Sammes
,
N.
, and
Du
,
Y.
,
2005
, “
Dynamic Modeling of Single Tubular SOFC Combining Heat/Mass Transfer and Electrochemical Reaction Effects
,”
J. Power Sources
,
142
(
1–2
), pp.
211
222
.
9.
Xi
,
H.
,
Sun
,
J.
, and
Tsourapas
,
V.
,
2007
, “
A Control Oriented Low Order Dynamic Model for Planar SOFC Using Minimum Gibbs Free Energy Method
,”
J. Power Sources
,
165
(
1
), pp.
253
266
.
10.
Arcak
,
M.
,
Gorgun
,
H.
,
Pedersen
,
L. M.
, and
Varigonda
,
S.
,
2004
, “
A Nonlinear Observer Design for Fuel Cell Hydrogen Estimation
,”
IEEE Trans. Control Syst. Technol.
,
12
(
1
), pp.
101
110
.
11.
Bastin
,
G.
, and
Dochain
,
D.
,
1990
,
On-Line Estimation and Adaptive Control of Bioreactors
,
Elsevier Science Publishers
,
Amsterdam, The Netherlands
.
12.
Gorgun
,
H.
,
Arcak
,
M.
,
Varigonda
,
S.
, and
Bortoff
,
S. A.
,
2005
, “
Observer Designs for Fuel Processing Reactors in Fuel Cell Power Systems
,”
Int. J. Hydrogen Energy
,
30
(
4
), pp.
447
457
.
13.
Iyer
,
N. M.
, and
Farell
,
A. E.
,
1996
, “
Design of a Stable Adaptive Nonlinear Observer for an Exothermic Stirred Tank Reactor
,”
Comput. Chem. Eng.
,
20
(
9
), pp.
1141
1147
.
14.
Soroush
,
M.
,
1997
, “
Nonlinear State-Observer Design With Application to Reactors
,”
Chem. Eng. Sci.
,
52
(
3
), pp.
387
404
.
15.
Dochain
,
D.
,
2003
, “
State Observers for Processes With Uncertain Kinetics
,”
Int. J. Control
,
76
(
15
), pp.
1483
1492
.
16.
Das
,
T.
,
Narayan
,
S.
, and
Mukherjee
,
R.
,
2010
, “
Steady-State and Transient Analysis of a Steam Reformer Based Solid Oxide Fuel Cell System
,”
ASME J. Fuel Cell Sci. Technol.
,
7
, pp.
1
10
.
17.
Incropera
,
F. P.
, and
DeWitt
,
D. P.
,
2002
,
Fundamentals of Heat and Mass Transfer
,
5th ed.
,
Wiley
,
New York
.
18.
Bove
,
R.
,
Lunghi
,
P.
, and
Sammes
,
N. M.
,
2005
, “
SOFC Mathematic Model for Systems Simulations—Part 2: Definition of an Analytical Model
,”
Int. J. Hydrogen Energy
,
30
(
2
), pp.
189
200
.
19.
Das
,
T.
, and
Mukherjee
,
R.
,
2007
, “
Observer Design for a Steam Reformer Based Solid Oxide Fuel Cell System With Anode Recirculation
,”
ASME
Paper No. IMECE2007-42332.
20.
Larminie
,
J.
, and
Dicks
,
A.
,
2003
,
Fuel Cell Systems Explained
,
2nd ed.
,
Wiley
,
New York
.
21.
Khalil
,
H. K.
,
2002
,
Nonlinear Systems
,
3rd ed.
,
Prentice Hall
,
Upper Saddle River, NJ
.
22.
Rugh
,
W. J.
,
1996
,
Linear Systems Theory
,
2nd ed.
,
Prentice Hall
,
Upper Saddle River, NJ
.
23.
Huang
,
K.
, and
Goodenough
,
J. B.
,
2009
,
Solid Oxide Fuel Cell Technology
,
1st ed.
,
Woodhead Publishing
,
Cambridge, UK
.
24.
Aris
,
R.
,
1989
,
Elementary Chemical Reactor Analysis
,
Butterworth Publishers
,
Stoneham, NY
.
25.
Das
,
T.
, and
Slippey
,
A.
,
2010
, “
Observer Based Transient Fuel Utilization Control for Solid Oxide Fuel Cells
,”
ASME
No. DSCC2010-4182.
You do not currently have access to this content.