In this study, we investigate a nonlinear control scheme to solve the practical issues such as inner coupling, load uncertainties, and model errors in the suspension control of maglev train. By considering the levitation module as an integral controlled object, the mathematical model of the levitation module is obtained. The inverse system method is adopted to deal with the inner coupling in the levitation module. By this way, the levitation module system is divided into two linear decoupled subsystems. Then, the linear quadratic regulator (LQR) theory is employed for achieving steady suspension. Besides, a disturbance nonlinear observer is designed to compensate the influence of load uncertainties and model errors. Furthermore, the availability of the proposed control scheme is validated through simulations and experimental results.

References

References
1.
Zhou
,
D. F.
,
Hansen
,
C. H.
,
Li
,
J.
, and
Chang
,
W. S.
,
2010
, “
Review of Coupled Vibration Problems in EMS Maglev Vehicles
,”
Int. J. Acoust. Vib.
,
15
(
1
), pp.
10
23
.
2.
Morita
,
M.
,
Iwaya
,
M.
, and
Fujino
,
M.
,
2004
, “
The Characteristics of the Levitation System of Linimo (HSST system)
,”
18th International Conference on Magnetically Levitated System and Linear Drives
,
Shanghai
,
China
, pp.
525
532
.
3.
Han
,
H. S.
,
Moon
,
S. J.
, and
Cho
,
H. W.
,
2003
, “
A Study on the Dynamic Modeling of a Magnetic Levitation Vehicle
,”
JSME Int. J. Ser. C
,
46
(
4
), pp.
1497
1501
.
4.
Hanasoge
,
A. M.
,
Alberts
,
T. E.
, and
Omran
,
A. M.
,
2011
, “
On the Influence of Structural Flexibility on Feedback Control Stability for Magnetically Suspended Vehicles
,”
ASME J. Dyn., Syst. Meas., Control
,
133
, p.
051010
.
5.
Wai
,
R. J.
, and
Lee
,
J. D.
,
2009
, “
Robust Levitation Control for Linear Maglev Rail System Using Fuzzy Neural Network
,”
IEEE Trans. Control Syst. Technol.
,
17
(
1
), pp.
4
14
.
6.
Köse
,
I. E.
, and
Jabbari
,
F.
,
2003
, “
Scheduled Controllers for Linear Systems With Bounded Actuators
,”
Automatica
,
39
(
8
), pp.
1377
1387
.
7.
Huang
,
C. M.
,
Yue
,
J. Y.
, and
Chen
,
M. S.
,
2000
, “
Adaptive Nonlinear Control of Repulsive Maglev Suspension Systems
,”
Control Eng. Pract.
,
8
(
12
), pp.
1357
1367
.
8.
Lin
,
F. J.
,
Chen
,
S. Y.
, and
Shyu
,
K. K.
,
2009
, “
Robust Dynamic Sliding-Mode Control Using Adaptive RENN for Magnetic Levitation System
,”
IEEE Trans. Neural Network
,
20
(
6
), pp.
938
951
.
9.
Yagiz
,
N.
, and
Hacioglu
,
Y.
,
2008
, “
Back-Stepping Control of a Vehicle With Active Suspensions
,”
Control Eng. Pract.
,
16
(
12
), pp.
1457
1467
.
10.
Lin
,
J. S.
, and
Huang
,
C. J.
,
2004
, “
Nonlinear Back-Stepping Active Suspension Design Applied to a Half-Car Model
,”
Veh. Syst. Dyn.
,
42
(
6
), pp.
373
393
.
11.
Cui
,
P.
,
Li
,
J.
, and
Liu
,
D. S.
,
2010
, “
The Carrying Capacity for the Electromagnetic Suspension Low-Speed Maglev Train on the Horizontal Curve
,”
Sci. Sin.
,
53
(
4
), pp.
1082
1087
.
12.
Hou
,
Z. G.
,
Zou
,
A. M.
,
Cheng
,
L.
, and
Tan
,
M.
,
2009
, “
Adaptive Control of an Electrically Driven Nonholonomic Mobile Robot Via Back-Stepping and Fuzzy Approach
,”
IEEE Trans. Control Syst. Technol.
,
17
(
4
), pp.
803
815
.
13.
Cheng
,
L.
,
Hou
,
Z. G.
, and
Tan
,
Min.
,
2009
, “
Adaptive Neural Network Tracking Control for Manipulators With Uncertain Kinematics, Dynamics and Actuator Model
,”
Automatica
,
45
(
10
), pp.
2312
2318
.
14.
Li
,
Y. G.
, and
Chang
,
W. S.
,
1999
, “
Cascade Control of an EMS Maglev Vehicle's Levitation Control System
,”
ACTA Autom. Sin.
,
25
(
2
), pp.
247
251
.
15.
Yang
,
Z.
, and
Li
,
X. X.
,
2007
, “
Study of Nonlinear Control of SSSC Based on Differential Geometry Approach
,”
2nd IEEE Conference on Industrial Electronics Application
, pp.
1118
1122
.
16.
Wang
,
J.
,
Sun
,
G. H.
,
Lu
,
L. X.
, and
Wang
,
Q. L.
,
2014
, “
General Formulation of Inverse Sub-Structuring Method for Multi-Coordinate Coupled System
,”
Adv. Mech. Eng.
,
6
, p.
475128
.
17.
Dai
,
X.
,
He
,
D.
, and
Zhang
,
T.
,
2001
, “
MIMO System Invisibility and Decoupling Control Strategies Based on ANN αth-order Inversion
,”
IET Proc. Control Theory Appl.
,
148
(
2
), pp.
125
136
.
18.
Fang
,
J. C.
, and
Ren
,
Y.
,
2012
, “
Decoupling Control of Magnetically Suspended Rotor System in Control Moment Gyros Based on an Inverse System Method
,”
IEEE/ASME Trans. Mechatronics
,
17
(
6
), pp.
1133
1144
.
19.
Miller
,
D. E.
, and
Davison
,
E. J.
,
2014
, “
Near Optimal LQR Performance in the Decentralized Setting
,”
IEEE Trans. Autom. Control
,
59
(
2
), pp.
327
340
.
20.
Priess
,
M. C.
,
Conway
,
R.
,
Choi
,
J.
,
Popovich
,
J. M.
, and
Radcliffe
,
C.
,
2015
, “
Solutions to the Inverse LQR Problem With Application to Biological Systems Analysis
,”
IEEE Trans. Control Syst. Technol.
,
23
(
2
), pp.
770
777
.
21.
Yao
,
J. Y.
,
Jiao
,
Z. X.
, and
Ma
,
W. D.
,
2014
, “
Extended–State–Observer-Based Output Feedback Nonlinear Robust Control of Hydraulic Systems With Back-stepping
,”
IEEE Trans. Ind. Electron.
,
61
(
11
), pp.
6285
6293
.
22.
Chen
,
W. H.
,
2004
, “
Disturbance Observer Based Control for Nonlinear Systems
,”
IEEE/ASME Trans. Mech.
,
9
(
4
), pp.
706
710
.
23.
Kim
,
B. K.
, and
Chung
,
W. K.
,
2003
, “
Advanced Disturbance Observer Design for Mechanical Positioning Systems
,”
IEEE Trans. Ind. Electron.
,
50
(
6
), pp.
1207
1216
.
You do not currently have access to this content.