This paper presents a new real-time heading estimation method for an all-wheel steered single-articulated autonomous vehicle guided by a magnetic marker system. To achieve good guidance control for the vehicle, precise estimation of the position and heading angle during travel is necessary. The main concept of this study is to estimate the heading angle from the relative orientations of the magnetic markers and the vehicle motion. To achieve this, a kinematic model of the all-wheel steered vehicle is derived and combined with the motion of a magnetic ruler mounted near each axle underneath the vehicle. The position coordinates and polarities of the magnetic markers, which are provided a priori, are used to determine the vehicle position at every detection instance. A gyroscope is employed to assist real-time heading estimation at sample times when there are no marker detection data. The proposed method was tested on a real vehicle and evaluated by comparing the experimental results with those of the differential global positioning system (DGPS) in real-time kinematics (RTK) mode. Experimental results show that the proposed method exhibits good performance for heading estimation.

References

References
1.
Be
,
H.
,
2006
, “
Precise Navigation for a 4WS Mobile Robot
,”
J. Zhejiang Univ. Sci. A
,
7
(
2
), pp.
185
193
.
2.
Abbott
,
E.
, and
Powell
,
D.
,
1999
, “
Land-Vehicle Navigation Using GPS
,”
Proc. IEEE
,
87
(
1
), pp.
145
162
.
3.
Mayhew
,
D. M.
,
1999
, “
Multi-Rate Sensor Fusion for GPS Navigation Using Kalman Filtering
,” M.Sc. Report, Virginia Polytechnic Institute, Blacksburg, VA.
4.
Bonnifait
,
P.
,
Bouron
,
P.
,
Crubille
,
P.
, and
Meizel
,
D.
,
2001
, “
Data Fusion of Four ABS Sensors and GPS for an Enhanced Localization of Car-Like Vehicles
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Seoul, Korea, May 21–26, pp.
1597
1602
.
5.
Jo
,
K.
,
Chu
,
K.
, and
Sunwoo
,
M.
,
2012
, “
Interacting Multiple Filter-Based Sensor Fusion of GPS With In-Vehicle Sensors for Real-Time Vehicle Position
,”
IEEE Trans. Intell. Transp. Syst.
,
13
(
1
), pp.
329
343
.
6.
Broggi
,
A.
,
Bertozzi
,
M.
,
Fascioli
,
A.
,
Lo Bianco
,
C. G.
, and
Piazzi
,
A.
,
1999
, “
The ARGO Autonomous Vehicle's Vision and Control Systems
,”
Int. J. Intell. Control Syst.
,
3
(
4
), pp.
409
441
.
7.
Reina
,
G.
, and
Milella
,
A.
,
2011
, “
FLane: An Adaptive Fuzzy Logic Lane Tracking System for Driver Assistance
,”
ASME J. Dyn. Syst., Meas., Control
,
133
(
2
), p.
021002
.
8.
Se
,
S.
,
Lowe
,
D.
, and
Little
,
J.
,
2001
, “
Vision-Based Mobile Robot Localization and Mapping Using Scale-Invariant Features
,”
IEEE International Conference on Robotics and Automation
(
ICRA
),
Seoul, Korea
, May 21–26, pp.
2051
2058
.
9.
Randeniya
,
D. I. B.
,
Sarkar
,
S.
, and
Gunaratne
,
M.
,
2010
, “
Vision–IMU Integration Using a Slow-Frame-Rate Monocular Vision System in an Actual Roadway Setting
,”
IEEE Trans. Intell. Transp. Syst.
,
11
(
2
), pp.
256
266
.
10.
Bai
,
L.
, and
Wang
,
Y.
,
2010
, “
A Sensor Fusion Framework Using Multiple Particle Filters for Video-Based Navigation
,”
IEEE Trans. Intell. Transp. Syst.
,
11
(
2
), pp.
348
358
.
11.
Farrell
,
J. A.
,
Tan
,
H.-S.
, and
Yang
,
Y.
,
2003
, “
Carrier Phase GPS-Aided INS Based Vehicle Lateral Control
,”
ASME J. Dyn. Syst., Meas., Control
,
125
(
3
), pp.
339
353
.
12.
Tan
,
H.-S.
,
Bougler
,
B.
,
Farrell
,
J. A.
, and
Yang
,
Y.
,
2003
, “
Automatic Vehicle Steering Controls: DGPS/INS and Magnetic Markers
,”
American Control Conference
(
ACC
), Denver, CO, June 4–6, Vol.
1
, pp.
60
65
.
13.
Farrell
,
J.
,
Barth
,
M.
,
Galijan
,
R.
, and
Sinko
,
J.
,
1998
, “
GPS/INS Based Lateral and Longitudinal Control Demonstration: Final Report
,” California PATH Research Report, ITS, University of California, Berkeley, CA, Report No. UCB-ITS-PRR-98-28.
14.
Minnesota Department of Transportation
,
2001
, “
Detailed Design, Intelligent Vehicle Initiative, Specialty Vehicle Field Operational Test
,” Mn/DOT-US DOT Cooperative Agreement No. DTFH61-99-X-00101.
15.
Minnesota Department of Transportation
,
2002
, “
Validation Report, Intelligent Vehicle Initiative, Specialty Vehicle Field Operational Test
,” Mn/DOT-US DOT Cooperative Agreement No. DTFH61-99-X-00101.
16.
Donath
,
M.
,
Shankwitz
,
C.
,
Alexander
,
L.
,
Gorjestani
,
A.
,
Cheng
,
P.
, and
Newstrom
,
B.
,
2003
, “
Bus Rapid Transit Lane Assist Technology Systems. Volume 1: Technology Assessment
,”
University of Minnesota
, ITS Institute, Minneapolis, MN, Paper No. FTA-MN-26-7003.
17.
Kim
,
E.
,
Darido
,
G.
, and
Schneck
,
D.
,
2005
, “
Las Vegas Metropolitan Area Express (MAX) BRT Demonstration Project Evaluation
,”
Federal Transit Administration
,
Washington, DC
, Paper No.
FTA
VA-26-7222-2005.1.
18.
Conde Bento
,
L.
, and
Nunes
,
U.
,
2004
, “
Autonomous Navigation Control With Magnetic Markers Guidance of a Cybernetic Car Using Fuzzy Logic
,”
Mach. Intell. Rob. Control Cyber Sci.
,
6
(
1
), pp.
1
10
.
19.
Barata
,
M.
,
Nunes
,
U.
,
Conde Bento
,
L.
, and
Mendes
,
A.
,
2004
, “
Data Fusion of Wheel Encoders and Magnetic Sensors for Autonomous Vehicles Navigation
,”
6th Portuguese Conference on Automatic Control (CONTROLO 2004)
, Faro, Portugal, June 7–9, pp. 31–37.
20.
Xu
,
H. G.
,
Wang
,
C.
,
Yang
,
R.
, and
Yang
,
M.
,
2006
, “
Extended Kalman Filter Based Magnetic Guidance for Intelligent Vehicles
,”
IEEE Intelligent Vehicles Symposium
,
Tokyo, Japan
, June 13–15, pp.
169
175
.
21.
Bourny
,
V.
,
Capitaine
,
T.
,
Barrandon
,
L.
,
Pegard
,
C.
, and
Lorthois
,
A.
,
2001
, “
A Localization System Based on Buried Magnets and Dead Reckoning for Mobile Robots
,” IEEE International Symposium on Industrial Electronics (
ISIE 2010
), Bari, Italy, July 4–7, pp.
373
378
.
22.
Surrécio
,
A.
,
Nunes
,
U.
, and
Araújo
,
R.
,
2005
, “
Fusion of Odometry With Magnetic Sensors Using Kalman Filters and Augmented System Models for Mobile Robot Navigation
,”
IEEE International Symposium on Industrial Electronics
(
ISIE 2005
),
Dubrovnik, Croatia
, June 20–23, pp.
1551
1556
.
23.
Lopes
,
A. C.
,
Moita
,
F.
,
Nunes
,
U.
, and
Solea
,
R.
,
2007
, “
An Outdoor Guidepath Navigation System for AMRs Based on Robust Detection of Magnetic Markers
,”
12th IEEE Conference on Emerging Technologies and Factory Automation
(
ETFA 2007
), Patras, Greece, Sept. 25–28, pp.
989
996
.
24.
Tan
,
H.
, and
Bougler
,
B.
,
2001
, “
Vehicle Lateral Warning, Guidance and Control Based on Magnetic Markers: PATH Report of AHSRA Smart Cruise 21 Proving Tests
,” California PATH Program, Institute of Transportation Studies, University of California, Berkeley, CA, Paper No. UCB-ITS-PWP-2001-6.
25.
Ryoo
,
Y.
, and
Park
,
J.
,
2012
, “
Design and Development of Magnetic Position Sensor for Magnetic Guidance System of Automated Ground Vehicle
,”
12th International Conference on Control, Automation and Systems
(
ICCAS
),
Jeju Island, Korea
, Oct. 17–21, pp.
988
991
.
26.
Frog
,
2015
, Frog AGV Systems, Utrecht, The Netherlands, http://www.frog.nl
You do not currently have access to this content.