An improved method to provide a motion trajectory for full flight simulator to simulate the acceleration during a flight simulation is presented. The motion cueing trajectory is based on a constrained optimization problem, with the generated optimal acceleration cues subjected to the actuators travel constraints of the motion platform. The motion platform researched in this contribution is a redundantly actuated parallel manipulator, therefore the available workspace is more limited and the actuator constraints become more complex. The differential kinematic analysis is utilized in the optimization problem to define the relationship of the acceleration in the platform coordinate and in the actuator coordinates. An acceleration profile is defined in function of the actuator travel to create a strict acceleration constraint in the actuator coordinate, thus a strict travel constraint. The algorithm is tested in a simulation and implemented in a full size redundantly actuated motion platform. Measurement results show that the proposed new motion cueing algorithm (MCA) is able to keep the actuators within their travel limit and at the same time provide the correct motion cues for the simulator pilots. The need to tune the MCA for the worst case scenario which is necessary to avoid damage to the platform, while at the same time can be disadvantageous for the normal case use, is relieved by the utilization of the online optimization process.

References

References
1.
Allerton
,
D.
,
2009
,
Principles of Flight Simulation
,
Wiley
,
Chichester, UK
.
2.
Telban
,
R. J.
, and
Cardullo
,
F. M.
,
2005
, “
Motion Cueing Algorithm Development: Human-Centered Linear and Nonlinear Approaches
,” Technical Report No. NASA/CR-2005-213747
3.
Niccolini
,
M.
,
Pollini
,
L.
,
Innocenti
,
M.
,
Giordano
,
P.
,
Teufel
,
H.
, and
Bülthoff
,
H.
,
2009
, “
Towards Real-Time Aircraft Simulation With the MPI Motion Simulator
,”
AIAA
Paper No. 2009-5918.
4.
Teufel
,
H.
,
Nusseck
,
H.
,
Beykirch
,
K.
,
Butler
,
J.
,
Kerger
,
M.
, and
Bülthoff
,
H.
,
2007
, “
MPI Motion Simulator: Development and Analysis of a Novel Motion Simulator
,”
AIAA
Paper No. 2007-6476.
5.
Nordmark
,
S.
,
Jansson
,
H.
,
Palmkvist
,
G.
, and
Sehammar
,
H.
,
2004
, “
The New VTI Driving Simulator-Multi Purpose Moving Base With High Performance Linear Motion
,”
Driving Simulator Conference–Europe
.
6.
Bles
,
W.
,
Hosman
,
R.
, and
de Graaf
,
B.
,
2000
, “
Desdemona: Advanced Disorientation Trainer and (Sustained-G) Flight Simulator
,”
AIAA
Paper No. 2000-4176.
7.
Pradipta
,
J.
,
Klünder
,
M.
,
Weickgenannt
,
M.
, and
Sawodny
,
O.
,
2013
, “
Development of a Pneumatically Driven Flight Simulator Stewart Platform Using Motion and Force Control
,”
IEEE/ASME
International Conference on Advanced Intelligent Mechatronics
, Wollongong, New Zealand, Jul. 9–12, pp.
158
163
.
8.
Stewart
,
D.
,
1965
, “
A Platform With Six Degrees of Freedom
,”
Proc. Inst. Mech. Eng.
,
180
(
1
), pp.
371
378
.
9.
Schmidt
,
S.
, and
Conrad
,
B.
,
1970
, “
Motion Drive Signals for Piloted Flight Simulators
,” Report No. NASA-CR-1601.
10.
Nahon
,
M.
, and
Reid
,
L.
,
1990
, “
Simulator Motion Drive Algorithms: A Designer's Perspective
,”
J. Guid., Control Dyn.
,
13
(
2
), pp.
356
362
.
11.
Grant
,
P.
, and
Naseri
,
A.
,
2005
, “
Actuator State Based Adaptive Motion Drive Algorithm
,”
Driving Simulator Conference-North America
, pp.
31
39
.
12.
Naseri
,
A.
, and
Grant
,
P.
,
2005
, “
An Improved Adaptive Motion Drive Algorithm
,”
AIAA
Paper No. 2005-6500.
13.
Dagdelen
,
M.
,
Reymond
,
G.
,
Kemeny
,
A.
,
Bordier
,
M.
, and
Maïzi
,
N.
,
2009
, “
Model-Based Predictive Motion Cueing Strategy for Vehicle Driving Simulators
,”
Control Eng. Pract.
,
17
(
9
), pp.
995
1003
.
14.
Beghi
,
A.
,
Bruschetta
,
M.
, and
Maran
,
F.
,
2012
, “
A Real Time Implementation of MPC Based Motion Cueing Strategy for Driving Simulators
,” 51st Annual Conference on Decision and Control (
CDC
), Maui, HI, Dec. 10–12, pp.
6340
6345
.
15.
Baseggio
,
M.
,
Beghi
,
A.
,
Bruschetta
,
M.
,
Maran
,
F.
, and
Minen
,
D.
,
2011
, “
An MPC Approach to the Design of Motion Cueing Algorithm for Driving Simulators
,” 14th International
IEEE
Conference on Intelligent Transportation Systems
, Washington, DC, Oct. 5–7, pp.
692
697
.
16.
Fang
,
Z.
, and
Kemeny
,
A.
,
2012
, “
Motion Cueing Algorithms for a Real-Time Automobile Driving Simulator
,”
Driving Simulator Conference
, Paris, Sept. 6–7, pp.
159
174
.
17.
Garret
,
N.
, and
Best
,
M.
,
2013
, “
Model Predictive Driving Simulator Motion Cueing Algorithm With Actuator-Based Constraints
,”
Veh. Syst. Dyn.
,
51
(
8
), pp.
1151
1172
.
18.
Aminzadeh
,
M.
,
Mahmoodi
,
A.
, and
Sabzehparvar
,
M.
,
2012
, “
Optimal Motion-Cueing Algorithm Using Motion System Kinematic
,”
Eur. J. Control
,
18
(
4
), pp.
363
375
.
19.
Merlet
,
J.
,
2006
,
Parallel Robots
,
Springer
,
The Netherlands
.
20.
Siciliano
,
B.
,
Sciavicco
,
L.
,
Villani
,
L.
, and
Oriolo
,
G.
,
2009
,
Robotics: Modelling, Planning and Control
,
Springer
,
London
.
21.
Chakarov
,
D.
,
2004
, “
Study of the Antagonistic Stiffness of Parallel Manipulators With Actuation Redundancy
,”
Mech. Mach. Theory
,
39
(
6
), pp.
583
601
.
22.
Pradipta
,
J.
,
Knierim
,
K.
, and
Sawodny
,
O.
,
2015
, “
Force Trajectory Generation for the Redundant Actuator in a Pneumatically Actuated Stewart Platform
,”
6th International Conference on Automation, Robotics, and Applications
(
ICARA
), Queenstown, New Zealand, Feb. 17–19, pp.
525
530
.
23.
2015
, “
D-Sim New Generation Flight Training Devices
,” Diamond Aircraft Industries, Wiener Nuestadt, Austria.
24.
2009
, “
Manual of Criteria for the Qualification of Flight Simulation Training Devices, Volume I-Aeroplanes
,” 3rd ed., International Civil Aviation Organization, Montreal, Canada.
25.
Tsai
,
L.-W.
,
1999
,
Robot Analysis: The Mechanics of Serial and Parallel Manipulators
,
Wiley
,
New York
.
26.
Knierim
,
K.
, and
Sawodny
,
O.
,
2015
, “
Tool-Center-Point Control of the KAI Manipulator Using Constrained QP Optimization
,”
Mechatronics
,
30
, pp. 85–93.
27.
Mattingley
,
J.
, and
Boyd
,
S.
,
2012
, “
CVXGEN: A Code Generator for Embedded Convex Optimization
,”
Optim. Eng.
,
13
(
1
), pp.
1
27
.
28.
dSPACE
,
2015
, “
Ds1006 Processor Board
.”
You do not currently have access to this content.