Dry clutch control is a typical nonlinear problem due to the nonlinear characteristics of diaphragm springs. For precise position control of the automated dry clutch, a modified predictive functional control (mPFC) method is proposed. First, a novel mechanical actuator is designed and models of the automated dry clutch system are built based on theoretical analysis and experimental data. Then, in order to compensate for the position error of direct current (DC) motor caused by load torque, modifications are introduced to a regular predictive functional control (PFC), including a sliding mode observer (SMO) to estimate the load torque and a predictive model concerning the load torque. Next, simulations show that the SMO could estimate the load torque accurately and the mPFC performs well with the nonlinear load torque. Finally, experiments are carried out on a test bench and the results are in accordance with the simulations. Due to the little online computing burden and the simple structure of the mPFC, it could be used in other industrial control systems which need fast response.

References

References
1.
Pisaturo
,
M.
,
Cirrincione
,
M.
, and
Senatore
,
A.
,
2015
, “
Multiple Constrained MPC Design for Automotive Dry Clutch Engagement
,”
IEEE/ASME Trans. Mechatronics
,
20
(
1
), pp.
469
480
.
2.
Zhao
,
Z.
,
Chen
,
H.
,
Zhen
,
Z.
, and
Yang
,
Y.
,
2014
, “
Optimal Torque Coordinating Control of the Launching With Twin Clutches Simultaneously Involved for Dry Dual-Clutch Transmission
,”
Veh. Syst. Dyn.
,
52
(
6
), pp.
776
801
.
3.
Myklebust
,
A.
, and
Eriksson
,
L.
,
2015
, “
Modeling, Observability, and Estimation of Thermal Effects and Aging on Transmitted Torque in a Heavy Duty Truck With a Dry Clutch
,”
IEEE/ASME Trans. Mechatronics
,
20
(
1
), pp.
61
72
.
4.
Li
,
L.
,
Yang
,
C.
,
Zhang
,
Y.
,
Zhang
,
L.
, and
Song
,
J.
,
2015
, “
Correctional DP-Based Energy Management Strategy of Plug-in Hybrid Electric Bus for City-Bus-Route
,”
IEEE Trans. Veh. Technol.
,
64
(
7
), pp.
2792
2803
.
5.
Dongsuk
,
K.
,
Peng
,
H.
, and
Bucknor
,
N.
,
2013
, “
Control of Engine-Starts for Optimal Drivability of Parallel Hybrid Electric Vehicles
,”
ASME J. Dyn. Syst., Meas., Control
,
135
(
2
), p.
021020
.
6.
Vasca
,
F.
,
Iannelli
,
L.
,
Senatore
,
A.
, and
Reale
,
G.
,
2011
, “
Torque Transmissibility Assessment for Automotive Dry-Clutch Engagement
,”
IEEE/ASME Trans. Mechatronics
,
16
(
3
), pp.
564
573
.
7.
Zhao
,
Z.
,
Chen
,
H.
,
Yang
,
Y.
, and
He
,
L.
,
2015
, “
Torque Coordinating Robust Control of Shifting Process for Dry Dual Clutch Transmission Equipped in a Hybrid Car
,”
Veh. Syst. Dyn.
,
53
(
9
), pp.
1269
1295
.
8.
Yang
,
C.
,
Jiao
,
X.
,
Li
,
L.
,
Zhang
,
Y.
,
Zhang
,
L.
, and
Song
,
J.
,
2015
, “
Robust Coordinated Control for Hybrid Electric Bus With Single-Shaft Parallel Hybrid Powertrain
,”
IET Control Theory Appl.
,
9
(
2
), pp.
270
282
.
9.
Gao
,
B.
,
Chen
,
H.
,
Liu
,
Q.
, and
Chu
,
H.
,
2014
, “
Position Control of Electric Clutch Actuator Using a Triple-Step Nonlinear Method
,”
IEEE Trans. Ind. Electron.
,
61
(
12
), pp.
6995
7003
.
10.
Wang
,
X.
,
Xie
,
X.
,
Wu
,
X.
, and
Yu
,
T.
,
2008
, “
Precise Position Tracking Control Based on Adaptive Neuron PID Algorithm for Automatic Clutch Driven by DC Motor
,”
IEEE VPPC, Vol.
1
, pp.
1
4
.
11.
Gao
,
B.
,
Chen
,
H.
,
Tian
,
L.
, and
Sanada
,
K.
,
2012
, “
A Nonlinear Clutch Pressure Observer for Automatic Transmission: Considering Drive-Shaft Compliance
,”
ASME J. Dyn. Syst., Meas., Control
,
134
(
1
), p.
011081
.
12.
Li
,
S.
,
Wu
,
C.
, and
Sun
,
Z.
,
2015
, “
Design and Implementation of Clutch Control for Automotive Transmissions Using Terminal Sliding Mode Control and Uncertainty Observer
,”
IEEE Trans. Veh. Technol.
(online).
13.
Walker
,
P.
,
Zhu
,
B.
, and
Zhang
,
N.
,
2014
, “
Nonlinear Modeling and Analysis of Direct Acting Solenoid Valves for Clutch Control
,”
ASME J. Dyn. Syst., Meas., Control
,
136
(
5
), p.
051023
.
14.
Gao
,
B.
,
Xiang
,
Y.
,
Chen
,
H.
,
Liang
,
Q.
, and
Guo
,
L.
,
2015
, “
Optimal Trajectory Planning of Motor Torque and Clutch Slip Speed for Gear Shift of a Two-Speed Electric Vehicle
,”
ASME J. Dyn. Syst., Meas., Control
,
137
(
6
), p.
061016
.
15.
Han
,
H.
, and
Qiao
,
J.
,
2014
, “
Nonlinear Model-Predictive Control for Industrial Processes: An Application to Wastewater Treatment Process
,”
IEEE Trans. Ind. Electron.
,
61
(
4
), pp.
1970
1982
.
16.
Liu
,
X.
,
Constantinescu
,
D.
, and
Shi
,
Y.
,
2014
, “
Multistage Suboptimal Model Predictive Control With Improved Computational Efficiency
,”
ASME J. Dyn. Syst., Meas., Control
,
136
(
3
), p.
031026
.
17.
Stastny
,
T.
,
Garcia
,
G.
, and
Keshmiri
,
S.
,
2015
, “
Collision and Obstacle Avoidance in Unmanned Aerial Systems Using Morphing Potential Field Navigation and Nonlinear Model Predictive Control
,”
ASME J. Dyn. Syst., Meas., Control
,
137
(
1
), p.
014503
.
18.
Stefan
,
R.
,
Colin
,
N.
, and
Manfred
,
M.
,
2012
, “
Computational Complexity Certification for Real-Time MPC With Input Constraints Based on the Fast Gradient Method
,”
IEEE Trans. Autom. Control
,
57
(
6
), pp.
1391
1403
.
19.
Li
,
L.
,
You
,
S.
,
Yang
,
C.
,
Yan
,
B.
,
Song
,
J.
, and
Chen
,
Z.
,
2016
, “
Driving-Behavior-Aware Stochastic Model Predictive Control for Plug-in Hybrid Electric Buses
,”
Appl. Energy
,
162
, pp.
868
897
.
20.
Rubagotti
,
M.
,
Raimondo
,
D.
,
Ferrara
,
A.
, and
Magni
,
L.
,
2011
, “
Robust Model Predictive Control With Integral Sliding Mode in Continuous-Time Sampled-Data Nonlinear Systems
,”
IEEE Trans. Autom. Control
,
56
(
3
), pp.
556
570
.
21.
Wang
,
Y.
, and
Boyd
,
S.
,
2010
, “
Fast Model Predictive Control Using Online Optimization
,”
IEEE Trans. Control Syst. Technol.
,
18
(
2
), pp.
267
278
.
22.
Richalet
,
J.
,
1993
, “
Industrial Applications of Model Based Predictive Control
,”
Automatica
,
29
(
5
), pp.
1251
1274
.
23.
Song
,
Y.
,
Yang
,
B.
,
Qiu
,
S.
, and
Ma
,
X.
,
2012
, “
Cascade Temperature Control for Bench-Scale Batch Reactor: An Application of Predictive Functional Control Technique
,”
IEEE WCICA
, pp.
1564
1569
.
24.
Liu
,
H.
, and
Li
,
S.
,
2012
, “
Speed Control for PMSM Servo System Using Predictive Functional Control and Extended State Observer
,”
IEEE Trans. Ind. Electron.
,
59
(
2
), pp
1171
1183
.
25.
Li
,
S.
,
Liu
,
H.
, and
Fu
,
W.
,
2013
, “
Predictive Functional Control of PMSM Based on a Composite Prediction Mode
,”
IEEE
International Symposium on SLED/PRECEDE
, pp.
1
4
.
26.
Dejan
,
D.
, and
Skrjanc
,
I.
,
2010
, “
Predictive Functional Control Based on an Adaptive Fuzzy Model of a Hybrid Semi-Batch Reactor
,”
Control Eng. Pract.
,
18
(
8
), pp.
979
989
.
27.
Lee
,
S.
,
Li
,
Y.
,
Chen
,
Y.
, and
Ahn
,
H.
,
2014
, “
H∞ and Sliding Mode Observers for Linear Time-Invariant Fractional-Order Dynamic Systems With Initial Memory Effect
,”
ASME J. Dyn. Syst., Meas., Control
,
136
(
5
), p.
051022
.
28.
Berkel
,
K.
,
Veldpaus
,
F.
,
Hofman
,
T.
,
Vroemen
,
B.
, and
Steinbuch
,
M.
,
2014
, “
Fast and Smooth Clutch Engagement Control for a Mechanical Hybrid Powertrain
,”
IEEE Trans. Control Syst. Technol.
,
22
(
4
), pp.
1240
1254
.
29.
Song
,
X.
, and
Sun
,
Z.
,
2014
, “
Pressure-Based Clutch Control for Automotive Transmissions Using a Sliding-Mode Controller
,”
IEEE/ASME Trans. Mechatronics
,
17
(
3
), pp.
534
546
.
You do not currently have access to this content.