Neural networks are powerful tools for black box system identification. However, their main drawback is the large number of parameters usually required to deal with complex systems. Classically, the model's parameters minimize a L2-norm-based criterion. However, when using strongly corrupted data, namely, outliers, the L2-norm-based estimation algorithms become ineffective. In order to deal with outliers and the model's complexity, the main contribution of this paper is to propose a robust system identification methodology providing neuromodels with a convenient balance between simplicity and accuracy. The estimation robustness is ensured by means of the Huberian function. Simplicity and accuracy are achieved by a dedicated neural network design based on a recurrent three-layer architecture and an efficient model order reduction procedure proposed in a previous work (Romero-Ugalde et al., 2013, “Neural Network Design and Model Reduction Approach for Black Box Nonlinear System Identification With Reduced Number of Parameters,” Neurocomputing, 101, pp. 170–180). Validation is done using real data, measured on a piezoelectric actuator, containing strong natural outliers in the output data due to its microdisplacements. Comparisons with others black box system identification methods, including a previous work (Corbier and Carmona, 2015, “Extension of the Tuning Constant in the Huber's Function for Robust Modeling of Piezoelectric Systems,” Int. J. Adapt. Control Signal Process., 29(8), pp. 1008–1023) where a pseudolinear model was used to identify the same piezoelectric system, show the relevance of the proposed robust estimation method leading balanced simplicity-accuracy neuromodels.

References

References
1.
Seo
,
J.
,
Khajepour
,
A.
, and
Huissoon
,
J. P.
,
2011
, “
Identification of Die Thermal Dynamics Using Neural Networks
,”
ASME J. Dyn. Syst., Meas., Control
,
133
(
6
), p.
061008
.
2.
Han
,
X.
,
Xie
,
W.
,
Fu
,
Z.
, and
Luo
,
W.
,
2011
, “
Nonlinear Systems Identification Using Dynamic Multi-Time Scale Neural Networks
,”
Neurocomputing
,
74
(
17
), pp.
3428
3439
.
3.
Jerome
,
T. C.
,
Martin
,
R.
, and
Atlas
,
L.
,
1994
, “
Recurrent Neural Networks and Robust Time Series Prediction
,”
IEEE Trans. Neural Networks
,
5
(
2
), pp.
240
254
.
4.
Corbier
,
C.
, and
Carmona
,
J.-C.
,
2015
, “
Extension of the Tuning Constant in the Huber's Function for Robust Modeling of Piezoelectric Systems
,”
Int. J. Adapt. Control Signal Process.
,
29
(
8
), pp.
1008
1023
.
5.
Chen
,
D. S.
, and
Jain
,
R. C.
,
1994
, “
A Robust Backpropagation Learning Algorithm for Function Approximation
,”
IEEE Trans. Neural Networks
,
5
(
3
), pp.
467
479
.
6.
Bloch
,
G.
,
Thomas
,
P.
, and
Theilliol
,
D.
,
1997
, “
Accommodation to Outliers in Identification of Non Linear SISO Systems With Neural Networks
,”
Neurocomputing
,
14
(
1
), pp.
85
99
.
7.
Fu
,
Y.-Y.
,
Wu
,
C.-J.
,
Ko
,
C.-N.
, and
Jeng
,
J.-T.
,
2011
, “
Radial Basis Function Networks With Hybrid Learning for System Identification With Outliers
,”
Appl. Soft Comput.
,
11
(
3
), pp.
3083
3092
.
8.
Ko
,
C.-N.
,
2012
, “
Identification of Nonlinear Systems With Outliers Using Wavelet Neural Networks Based on Annealing Dynamical Learning Algorithm
,”
Eng. Appl. Artif. Intell.
,
25
(
3
), pp.
533
543
.
9.
Majhi
,
B.
, and
Panda
,
G.
,
2011
, “
Robust Identification of Nonlinear Complex Systems Using Low Complexity ANN and Particle Swarm Optimization Technique
,”
Expert Syst. Appl.
,
38
(
1
), pp.
321
333
.
10.
McKean
,
J. W.
,
2004
, “
Robust Analysis of Linear Models
,”
Stat. Sci.
,
19
(
4
), pp.
562
570
.
11.
Hsieh
,
J.-G.
,
Lin
,
Y.-L.
, and
Jeng
,
J.-H.
,
2008
, “
Preliminary Study on Wilcoxon Learning Machines
,”
IEEE Trans. Neural Networks
,
19
(
2
), pp.
201
211
.
12.
Tsai
,
H.-H.
, and
Yu
,
P.-T.
,
2000
, “
On the Optimal Design of Fuzzy Neural Networks With Robust Learning for Function Approximation
,”
IEEE Trans. Syst., Man, Cybern., Part B
,
30
(
1
), pp.
217
223
.
13.
Wang
,
W.-Y.
,
Lee
,
T.-T.
,
Liu
,
C.-L.
, and
Wang
,
C.-H.
,
1997
, “
Function Approximation Using Fuzzy Neural Networks With Robust Learning Algorithm
,”
IEEE Trans. Syst., Man, Cybern., Part B
,
27
(
4
), pp.
740
747
.
14.
Rubio
,
J. J.
, and
Cruz
,
J. H. P.
,
2014
, “
Evolving Intelligent System for the Modelling of Nonlinear Systems With Dead-Zone Input
,”
Appl. Soft Comput.
,
14
(
Pt. B
), pp.
289
304
.
15.
Zhang
,
J.
,
Zhu
,
Q.
,
Wu
,
X.
, and
Li
,
Y.
,
2013
, “
A Generalized Indirect Adaptive Neural Networks Backstepping Control Procedure for a Class of Non-Affine Nonlinear Systems With Pure-Feedback Prototype
,”
Neurocomputing
,
121
(
9
), pp.
131
139
.
16.
Castañeda
,
C.
,
Loukianov
,
A.
,
Sanchez
,
E.
, and
Castillo-Toledo
,
B.
,
2013
, “
Real-Time Torque Control Using Discrete-Time Recurrent High-Order Neural Networks
,”
Neural Comput. Appl.
,
22
(
6
), pp.
1223
1232
.
17.
An
,
S. Q.
,
Lu
,
T.
, and
Ma
,
Y.
,
2010
, “
Simple Adaptive Control for SISO Nonlinear Systems Using Neural Network Based on Genetic Algorithm
,”
IEEE
9th International Conference on Machine Learning and Cybernetics
,
Qingdao, China
, July 11–14, pp.
981
986
.
18.
Perez-Cruz
,
J. H.
,
Rubio
,
J. J.
,
Linares-Flores
,
J.
, and
Rangel
,
E.
,
2015
, “
Control of Uncertain Plants With Unknown Deadzone Via Differential Neural Networks
,”
IEEE Lat. Am. Trans.
,
13
(
7
), pp.
2085
2093
.
19.
Zhang
,
H.
,
Wu
,
W.
, and
Yao
,
M.
,
2012
, “
Boundedness and Convergence of Batch Back-Propagation Algorithm With Penalty for Feedforward Neural Networks
,”
Neurocomputing
,
89
, pp.
141
146
.
20.
Loghmanian
,
S.
,
Jamaluddin
,
H.
,
Ahmad
,
R.
,
Yusof
,
R.
, and
Khalid
,
M.
,
2012
, “
Structure Optimization of Neural Network for Dynamic System Modeling Using Multi-Objective Genetic Algorithm
,”
Neural Comput. Appl.
,
21
(
6
), pp.
1281
1295
.
21.
Rubio
,
J. J.
,
2014
, “
Evolving Intelligent Algorithms for the Modelling of Brain and Eye Signals
,”
Appl. Soft Comput.
,
14
(
Pt. B
), pp.
259
268
.
22.
Xie
,
W.
,
Zhu
,
Y.
,
Zhao
,
Z.
, and
Wong
,
Y.
,
2009
, “
Nonlinear System Identification Using Optimized Dynamic Neural Network
,”
Neurocomputing
,
72
(
13–15
), pp.
3277
3287
.
23.
Ge
,
H.
,
Qian
,
F.
,
Liang
,
Y.
,
Du
,
W.
, and
Wang
,
L.
,
2008
, “
Identification and Control of Nonlinear Systems by a Dissimilation Particle Swarm Optimization-Based Elman Neural Network
,”
Nonlinear Anal.: Real World Appl.
,
9
(
4
), pp.
1345
1360
.
24.
Coelho
,
L.
, and
Wicthoff
,
M.
,
2009
, “
Nonlinear Identification Using a B-Spline Neural Network and Chaotic Immune Approaches
,”
Mech. Syst. Signal Process.
,
23
(
8
), pp.
2418
2434
.
25.
Subudhi
,
B.
, and
Jenab
,
D.
,
2011
, “
A Differential Evolution Based Neural Network Approach to Nonlinear System Identification
,”
Appl. Soft Comput.
,
11
(
1
), pp.
861
871
.
26.
Romero-Ugalde
,
H. M.
,
Carmona
,
J.-C.
,
Alvarado
,
V. M.
, and
Reyes-Reyes
,
J.
,
2013
, “
Neural Network Design and Model Reduction Approach for Black Box Nonlinear System Identification With Reduced Number of Parameters
,”
Neurocomputing
,
101
, pp.
170
180
.
27.
Romero-Ugalde
,
H. M.
,
Carmona
,
J.-C.
,
Alvarado
,
V. M.
,
Reyes-Reyes
,
J.
, and
Corbier
,
C.
,
2014
, “
Balanced Simplicity-Accuracy Neural Network Model Families for System Identification
,”
Neural Comput. Appl.
,
26
(
1
), pp.
171
186
.
28.
Romero-Ugalde
,
H. M.
,
2013
, “
System Identification Using Neural Networks: A Balanced Accuracy, Complexity and Computational Cost Approach
,” Ph.D. thesis, in collaboration with the “Ecole nationale supérieure d'arts et métiers (ENSAM), France” and the “Centro Nacional de Investigacion y Desarrollo Tecnologico (CENIDET), Mexico”.
29.
Romero-Ugalde
,
H. M.
,
Carmona
,
J.-C.
,
Reyes-Reyes
,
J.
,
Alvarado
,
V. M.
, and
Mantilla
,
J.
,
2015
, “
Computational Cost Improvement of Neural Network Models in Black Box Nonlinear System Identification
,”
Neurocomputing
,
166
, pp.
96
108
.
30.
Xu
,
B.
,
Yang
,
C.
, and
Shi
,
Z.
,
2014
, “
Reinforcement Learning Output Feedback NN Control Using Deterministic Learning Technique
,”
IEEE Trans. Neural Networks Learn. Syst.
,
25
(
3
), pp.
635
641
.
31.
Xu
,
B.
,
Shi
,
Z.
,
Yang
,
C.
, and
Sun
,
F.
,
2014
, “
Composite Neural Dynamic Surface Control of a Class of Uncertain Nonlinear Systems in Strict-Feedback Form
,”
IEEE Trans. Cybern.
,
44
(
12
), pp.
2626
2634
.
32.
Sahnoun
,
M. A.
,
Romero-Ugalde
,
H. M.
,
Carmona
,
J.-C.
, and
Gomand
,
J.
,
2013
, “
Maximum Power Point Tracking Using P&O Control Optimized by a Neural Network Approach: A Good Compromise Between Accuracy and Complexity
,”
Energy Procedia
,
42
, pp.
650
659
.
33.
Xu
,
B.
,
Yang
,
C.
, and
Pan
,
Y.
,
2015
, “
Global Neural Dynamic Surface Tracking Control of Strict-Feedback Systems With Application to Hypersonic Flight Vehicle
,”
IEEE Trans. Neural Networks Learn. Syst.
,
26
(
10
), pp.
2563
2575
.
You do not currently have access to this content.