This paper deals with an adaptive nonlinear model predictive control (NMPC) based estimator in cases of mismatch modeling, presence of perturbations and/or parameter variations. Thus, we propose an adaptive nonlinear predictive controller based on the second-order divided difference filter (DDF) for multivariable systems. The controller uses a nonlinear state-space model for parameters and state estimation and for the control law synthesis. Two nonlinear optimization layers are included in the proposed algorithm. The first optimization problem is based on the output error (OE) model with a tuning factor, and it is dedicated to minimize the error between the model and the system at each sample time by estimating unknown parameters when assuming that all system states are available. The second optimization layer is used by the centralized nonlinear predictive controller to generate the control law which minimizes the error between future setpoints and future outputs along the prediction horizon. The proposed algorithm leads to a good tracking performance with an offset-free output and an effectiveness in perturbation attenuation. Practical results on a real setup show the reliability of the proposed approach.

References

References
1.
Adetola
,
V.
,
DeHaan
,
D.
, and
Guay
,
M.
,
2009
, “
Adaptive Model Predictive Control for Constrained Nonlinear Systems
,”
Syst. Control Lett.
,
58
(
5
), pp.
320
326
.
2.
Yang
,
J.
,
Xiao
,
L.
,
Qian
,
J.
, and
Li
,
H.
,
2012
, “
Output Tracking of Constrained Nonlinear Processes With Offset-Free Input-to-State Stable Fuzzy Predictive Control
,”
Int. J. Syst. Sci.
,
43
(
3
), pp.
475
490
.
3.
Tanaskovic
,
M.
,
Fagiano
,
L.
,
Smith
,
R.
, and
Morari
,
M.
,
2014
, “
Adaptive Receding Horizon Control for Constrained MIMO Systems
,”
Automatica
,
50
(
12
), pp.
3019
3029
.
4.
Pan
,
L.
,
Shen
,
J.
, and
Luh
,
P.
,
2012
, “
Adaptive General Predictive Control Using Optimally Scheduled Multiple Models for Parallel-Coursing Utility Units With a Header
,”
ASME J. Dyn. Syst., Meas. Control
,
134
(
4
), p.
041008
.
5.
Limon
,
D.
,
Alvarado
,
I.
,
Alamo
,
T.
, and
Camacho
,
E.
,
2010
, “
Robust Tube-Based MPC for Tracking of Constrained Linear Systems With Additive Disturbances
,”
J. Process Control
,
20
(
3
), pp.
248
260
.
6.
Zhang
,
T.
,
Feng
,
G.
, and
Zeng
,
X.
,
2009
, “
Nonlinear Model Predictive Control Using Parameter Varying BP-ARX Combination Model
,”
Automatica
,
45
(
4
), pp.
900
909
.
7.
Sawadogo
,
S.
,
Faye
,
R.
, and
Mora-Camino
,
F.
,
2001
, “
Decentralized Adaptive Predictive Control of Multireach Irrigation Canal
,”
Int. J. Syst. Sci.
,
32
(
10
), pp.
1287
1296
.
8.
Maeder
,
U.
, and
Morari
,
M.
,
2010
, “
Offset-Free Reference Tracking With Model Predictive Control
,”
Automatica
,
46
(
9
), pp.
1469
1476
.
9.
Horváth
,
K.
,
Galvis
,
E.
,
Valentín
,
M.
, and
Rodellar
,
J.
,
2015
, “
New Offset-Free Method for Model Predictive Control of Open Channels
,”
Control Eng. Pract.
,
41
, pp.
567
572
.
10.
Salhi
,
H.
,
Bouani
,
F.
, and
Ksouri
,
M.
,
2013
, “
Constrained MIMO Nonlinear Predictive Control Based Derivate-Free State Estimators
,”
International Conference on Control, Decision and Information Technologies (CoDIT)
, Hammamet, Tunisia.
11.
Prakash
,
J.
,
Patwardhan
,
S.
, and
Shah
,
S.
,
2010
, “
State Estimation and Nonlinear Predictive Control of Autonomous Hybrid System Using Derivative Free State Estimators
,”
Control Eng. Pract.
,
20
(
7
), pp.
787
799
.
12.
Madonski
,
R.
, and
Herman
,
P.
,
2015
, “
Survey on Methods of Increasing the Efficiency of Extended State Disturbance Observers
,”
ISA Trans.
,
56
, pp.
18
27
.
13.
Morari
,
M.
, and
Maeder
,
U.
,
2012
, “
Nonlinear Offset-Free Model Predictive Control
,”
Automatica
,
48
(
9
), pp.
2059
2067
.
14.
Bavdekar
,
V.
,
Deshpande
,
A.
, and
Patwardhan
,
S.
,
2011
, “
Identification of Process and Measurement Noise Covariance for State and Parameter Estimation Using Extended Kalman Filter
,”
J. Process Control
,
21
(
4
), pp.
585
601
.
15.
Liu
,
C.
,
Chen
,
W.
, and
Andrews
,
J.
,
2012
, “
Tracking Control of Small-Scale Helicopters Using Explicit Nonlinear MPC Augmented With Disturbance Observers
,”
Control Eng. Pract.
,
20
(
3
), pp.
258
268
.
16.
Nagy
,
Z.
,
Mahn
,
B.
,
Franke
,
R.
, and
Frank
,
A.
,
2007
, “
Evaluation Study of an Efficient Output Feedback Nonlinear Model Predictive Control for Temperature Tracking in an Industrial Batch Reactor
,”
Control Eng. Pract.
,
15
(
7
), pp.
839
850
.
17.
Tan
,
C.
,
Setiawan
,
R.
,
Bao
,
J.
, and
Bickert
,
G.
,
2015
, “
Studies on Parameter Estimation and Model Predictive Control of Paste Thickeners
,”
J. Process Control
,
28
, pp.
1
8
.
18.
Adetola
,
V.
, and
Guay
,
M.
,
2010
, “
Integration of Real-Time Optimization and Model Predictive Control
,”
J. Process Control
,
20
(
2
), pp.
125
133
.
19.
Biegler
,
L.
,
Yang
,
X.
, and
Fischer
,
G.
,
2015
, “
Advances in Sensitivity-based Nonlinear Model Predictive Control and Dynamic Real-time Optimization
,”
J. Process Control
,
30
, pp.
104
116
.
20.
Isaksson
,
A.
,
Sjöberg
,
J.
,
Törnqvist
,
D.
,
Ljung
,
L.
, and
Kok
,
M.
,
2015
, “
Using Horizon Estimation and Nonlinear Optimization for Grey-Box Identification
,”
J. Process Control
,
30
, pp.
69
79
.
21.
Opalka
,
J.
, and
Hubka
,
L.
,
2015
, “
Nonlinear State and Unmeasured Disturbance Estimation for Use in Power Plant Superheaters Control
,”
Procedia Eng.
,
100
, pp.
1539
1546
.
22.
Marchetti
,
A.
,
Ferramosca
,
A.
, and
Gonzalez
,
A.
,
2014
, “
Steady-State Target Optimization Designs for Integrating Real-Time Optimization and Model Predictive Control
,”
J. Process Control
,
24
(
1
), pp.
129
145
.
23.
Norgaard
,
M.
,
Poulsen
,
N.
, and
Ravn
,
O.
,
2000
, “
New Developments in State Estimation for Nonlinear Systems
,”
Automatica
,
36
(
11
), pp.
1627
1638
.
24.
Salhi
,
H.
,
Bouani
,
F.
, and
Ksouri
,
M.
,
2012
, “
MIMO Nonlinear Control Based on Divided Difference Filters
,”
Trans. Syst. Signals Device
,
7
(
1
), pp.
67
88
.
25.
Salhi
,
H.
,
Bouani
,
F.
, and
Ksouri
,
M.
,
2011
, “
Three Tanks Level Estimation Using Divided Difference Filter
,”
International Conference on Communications, Computing and Control Applications
, Hammamet, Tunisia.
26.
Huang
,
R.
,
Patwardhan
,
S.
, and
Biegler
,
L.
,
2010
, “
Stability of a Class of Discrete-Time Nonlinear Recursive Observers
,”
J. Process Control
,
20
(
10
), pp.
1150
1160
.
27.
Huang
,
R.
,
Patwardhan
,
S.
, and
Biegler
,
L.
,
2012
, “
Robust Stability of Nonlinear Model Predictive Control Based on Extended Kalman Filter
,”
J. Process Control
,
22
(
1
), pp.
82
89
.
You do not currently have access to this content.