In this paper, a new iterative algorithm is developed using control theoretic approach to find the minimum norm solution of underdetermined problems. The minimum norm solution is obtained by applying the H optimization technique. The accuracy and convergence rate of the proposed algorithm are ensured using the framework of linear feedback control theory. The performances of the proposed method, the QR decomposition method, and the least square minimal residue (LSMR) method are compared numerically. The number of iterations in the proposed algorithm is comparable with the LSMR method. Finally, the developed algorithm is applied to the control allocation problem and its effectiveness is demonstrated through a detailed simulation study.

References

References
1.
Donoho
,
D. L.
,
2006
, “
For Most Large Underdetermined Systems of Linear Equations the Minimal 1-Norm Solution Is Also the Sparsest Solution
,”
Commun. Pure Appl. Math.
,
59
(
6
), pp.
797
829
.
2.
Golub
,
H. G.
, and
Loan
,
F. C. V.
,
1996
,
Matrix Computations
,
3rd ed.
,
The Johns Hopkins University Press
,
Baltimore
.
3.
Higham
,
N. J.
,
2002
,
Accuracy and Stability of Numerical Algorithms
,
Society for Industrial and Applied Mathematics
,
Philadelphia
.
4.
Paige
,
C.
, and
Saunders
,
M.
,
1982
, “
LSQR: An Algorithm for Sparse Linear Equations and Sparse Least Squares
,”
ACM Trans. Math. Software
,
8
(
1
), pp.
43
71
.
5.
Fong
,
D. C.
, and
Saunders
,
M. A.
,
2011
, “
LSMR: An Iterative Algorithm for Sparse Least-Squares Problems
,”
SIAM J. Sci. Comput.
,
33
(
5
), pp.
2950
2971
.
6.
Bhaya
,
A.
, and
Kaszkurewicz
,
E.
,
2003
, “
Iterative Methods as Dynamical Systems With Feedback Control
,”
IEEE Conference on Decision and Control
, Vol.
3
, pp.
2374
2380
.
7.
Bhaya
,
A.
, and
Kaszkurewicz
,
E.
,
2006
, Control Perspectives on Numerical Algorithms and Matrix Problems (Advances in Design and Control), Vol.
10
,
Society for Industrial and Applied Mathematics
,
Philadelphia
.
8.
Bhaya
,
A.
, and
Kaszkurewicz
,
E.
,
2007
, “
A Control-Theoretic Approach to the Design of Zero Finding Numerical Methods
,”
IEEE Trans. Autom. Control
,
52
(
6
), pp.
1014
1026
.
9.
Helmke
,
U.
,
Jordan
,
J.
, and
Lanzon
,
A.
,
2006
, “
A Control Theory Approach to Linear Equation Solvers
,”
17th International Symposium on Mathematical Theory of Networks and Systems
, pp.
1401
1407
.
10.
Kashima
,
K.
, and
Yamamoto
,
Y.
,
2007
, “
System Theory for Numerical Analysis
,”
Automatica
,
43
(
7
), pp.
1156
1164
.
11.
Bhaya
,
A.
,
Bliman
,
P.
, and
Pazos
,
F.
,
2009
, “
Control-Theoretic Design of Iterative Methods for Symmetric Linear Systems of Equations
,”
IEEE Conference on Decision and Control
(
CDC/CCC
), Shanghai, Dec. 15–18, pp.
115
120
.
12.
Kishore
,
W. C. A.
,
Sen
,
S.
,
Ray
,
G.
, and
Ghoshal
,
T. K.
,
2008
, “
Dynamic Control Allocation for Tracking Time-Varying Control Demand
,”
J. Guid., Control, Dyn.
,
31
(
4
), pp.
1150
1157
.
13.
Naskar
,
A. K.
,
Patra
,
S.
, and
Sen
,
S.
,
2015
, “
Reconfigurable Direct Allocation for Multiple Actuator Failures
,”
IEEE Trans. Control Syst. Technol.
,
23
(
1
), pp.
397
405
.
14.
Johansen
,
T.
,
Fossen
,
T.
, and
Berge
,
S.
,
2004
, “
Constrained Nonlinear Control Allocation With Singularity Avoidance Using Sequential Quadratic Programming
,”
IEEE Trans. Control Syst. Technol.
,
12
(
1
), pp.
211
216
.
15.
Harkegard
,
O.
, and
Glad
,
S. T.
,
2005
, “
Resolving Actuator Redundancy—Optimal Control vs. Control Allocation
,”
Automatica
,
41
(
1
), pp.
137
144
.
16.
Zaccarian
,
L.
,
2009
, “
Dynamic Allocation for Input Redundant Control Systems
,”
Automatica
,
45
(
6
), pp.
1431
1438
.
17.
Bodson
,
M.
, and
Frost
,
S. A.
,
2011
, “
Load Balancing in Control Allocation
,”
J. Guid., Control, Dyn.
,
34
(
2
), pp.
380
387
.
18.
Hamayun
,
M. T.
,
Edwards
,
C.
, and
Alwi
,
H.
,
2013
, “
A Fault Tolerant Control Allocation Scheme With Output Integral Sliding Modes
,”
Automatica
,
49
(
6
), pp.
1830
1837
.
19.
Francis
,
B.
, and
Wonham
,
W.
,
1976
, “
The Internal Model Principle of Control Theory
,”
Automatica
,
12
(
5
), pp.
457
465
.
20.
Zhou
,
K.
,
Doyle
,
J. C.
, and
Glover
,
K.
,
1996
,
Robust and Optimal Control
,
Prentice Hall
,
Englewood Cliffs, NJ
.
21.
Gahinet
,
P.
, and
Apkarian
,
P.
,
1994
, “
Linear Matrix Inequality Approach to H∞ Control
,”
Int. J. Robust Nonlinear Control
,
4
(
4
), pp.
421
448
.
22.
Gahinet
,
P.
,
Nemirovskii
,
A.
,
Laub
,
A.
, and
Chilali
,
M.
,
1995
,
LMI Control Toolbox User's Guide
,
The MathWorks, Inc.
,
Natick, MA
.
23.
Kishore
,
W. C. A.
,
Dasgupta
,
S.
,
Ray
,
G.
, and
Sen
,
S.
,
2013
, “
Control Allocation for an Over-Actuated Satellite Launch Vehicle
,”
Aerosp. Sci. Technol.
,
28
(
1
), pp.
56
71
.
You do not currently have access to this content.