The importance of the brake-by-wire (BBW) system emerged from the fact that it replaces all the conventional hydraulic braking system components with electronic signals between sensors, control modules, and electrically driven braking actuators. This conversion has enormously contributed to the braking system performance in terms of responsiveness, integration with other vehicle subsystems, and an adaptive behavior in different driving circumstances. The aim of this research is investigating the sliding mode control (SMC) strategy to a proposed BBW system. To achieve this aim, BBW system is modeled and validated experimentally. The SMC strategy is applied to the model and validated experimentally. Moreover, this research focuses on compensating for the effect of worn pads on braking performance. The experimental work shows that the developed system model gives matched results with the experimental work. Applying SMC to the model shows a good performance in breaking operation with acceptable error. Applying of the SMC to the test rig shows a good performance with acceptable deviations. In addition, the experiments show that the control strategy is able to compensate the wear in braking pads and keep tracking the braking command.

References

References
1.
Erjavec
,
J.
,
2003
,
Automotive Brakes
,
Delmar Cengage Learning
,
Independence, KY
.
2.
Bo
,
L.
,
Shin
,
T. L.
,
Ji
,
H. R.
, and
Kil
,
T. C.
,
2013
, “
Energy-Regenerative Braking Control of Electric Vehicles Using Three-Phase Brushless Direct-Current Motors
,”
Energies
,
7
(
1
), pp.
99
114
.
3.
Anwar
,
S.
,
2004
, “
An Anti-Lock Braking Control System for a Hybrid Electromagnetic/Electrohydraulic Brake-by-Wire System
,”
2004 American Control Conference
, Boston, MA, June 30–July 2, pp.
2699
2704
.
4.
Anwar
,
S.
, and
Zheng
,
B.
,
2007
, “
An Antilock-Braking Algorithm for an Eddy-Current-Based Brake-by-Wire System
,”
IEEE Trans. Veh. Technol.
,
56
(
3
), pp.
1100
1107
.
5.
Ashutosh
,
S.
,
Zare
,
M.
, and
Patil
,
A.
,
2012
, “
Theoretical Studies on Magnetorheological Fluid Brake
,”
Int. J. Res. Mech. Eng. Technol.
,
2
(
2
), pp.
12
14
.
6.
Salem
,
H.
,
Aristoteles
,
R.
, and
Kevin
,
H.
,
2007
, “
Fault Tolerant Real Time Control System for Steer-by-Wire Electro-Hydraulic Systems
,”
Mechatronics
,
17
(
2–3
), pp.
129
142
.
7.
Yannian
,
R.
,
Wenjie
,
L.
,
Xiaoping
,
L.
, and
Zhiwei
,
Z.
,
2003
, “
Research on Vehicle Intelligent Braking Control Based on Neural Networks
,”
IEEE
Proceedings on Intelligent Transportation Systems
, Oct. 12–15, Vol.
2
, pp.
1384
1386
.
8.
Hong
,
J.
,
Hwang
,
D.
,
Yoon
,
I.
, and
Huh
,
P.
,
2008
, “
Development of a Vehicle Stability Control System Using Brake-by-Wire Actuators
,”
ASME J. Dyn. Syst., Meas., Control
,
130
(
1
), p. 011008.
9.
Fabio
,
T.
,
Matteo
,
C.
,
Giulio
,
P.
, and
Sergio
,
M. S.
,
2014
, “
Adaptive Position—Pressure Control of a Brake by Wire Actuator for Sport Motorcycles
,”
Mechatronics
,
20
(
2
), pp.
79
86
.
10.
Amir
,
P.
,
2009
, “
Adaptive Feedback Linearization Control of Antilock Braking Systems Using Neural Networks
,”
Mechatronics
,
19
(
5
), pp.
767
773
.
11.
Mara
,
T.
,
Roberto
,
S.
, and
Sergio
,
M. S.
,
2007
, “
Combining Slip and Deceleration Control for Brake-by-Wire Control Systems: A Sliding-Mode Approach
,”
Eur. J. Control
,
13
(
6
), pp.
593
611
.
12.
Utkin
,
V.
,
2008
, “
Sliding Mode Control: Mathematical Tools, Design and Applications
,”
Nonlinear and Optimal Control Theory
(Lecture Notes in Mathematics), Vol.
1932
,
Springer
,
Berlin/Heidelberg
, pp.
289
347
.
13.
Hung.
,
J. Y.
,
Gao
,
W.
, and
Hung
,
J. C.
,
1993
, “
Variable Structure Control: A Survey
,”
IEEE Trans. Ind. Electron.
,
40
(
1
), pp.
2
22
.
14.
Bartoszewicz
,
A.
, and
Nowacka-Leverton
,
A.
,
2009
,
Time-Varying Sliding Modes for Second and Third Order Systems
(Lecture Notes in Control and Information Sciences), Vol.
382
,
Springer-Verlag
,
Berlin/Heidelberg
.
15.
Farris
,
R. J.
, and
Goldfarb
,
M.
,
2011
, “
Design of a Multidisc Electromechanical Brake
,”
IEEE/ASME Trans. Mechatron.
,
16
(
6
), pp.
985
993
.
16.
Hartmann
,
H.
,
Schautt
,
M.
,
Pascucci
,
A.
, and
Gombert
,
B.
,
2002
, “
eBrake—The Mechatronic Wedge Brake
,”
SAE
Technical Paper No. 2002-01-2582.
17.
Roberts
,
R.
,
Hartmann
,
H.
, and
Gombert
,
B.
,
2003
, “
Modelling and Validation of the Mechatronic Wedge Brake
,”
SAE
Technical Paper No. 2003-01-3331.
18.
Roberts
,
R.
,
Gombert
,
B.
,
Hartmann
,
H.
, and
Schautt
,
M.
,
2004
, “
Testing the Mechatronic Wedge Brake
,”
SAE
Technical Paper No. 2004-01-2766.
19.
Fox
,
J.
,
Roberts
,
R.
,
Baier-Welt
,
C.
,
Ho
,
L. M.
,
Lacraru
,
L.
, and
Gombert
,
B.
,
2007
, “
Modeling and Control of a Single Motor Electronic Wedge Brake
,”
SAE
Technical Paper No. 2007-01-0866.
20.
Lee
,
C. F.
,
Manzie
,
C.
, and
Line
,
C.
,
2008
, “
Explicit Nonlinear MPC of an Automotive Electromechanical Brake
,”
17th World Congress of the International Federation of Automatic Control
, Seoul, Korea, July 6–11, pp.
10758
10763
.
21.
Navin
,
M. K.
,
Alamdari
,
A. H.
, and
Mirnia
,
S. A. S.
,
2010
, “
Learnable Problem Solution Data Structure ABS Control for Brake By Wire Vehicles
,”
Computer Design and Applications (ICCDA)
,
Qinhuangdao
,
China
,
4
(
1
), pp.
480
484
.
22.
Yi
,
K.
, and
Chung
,
J.
,
2001
, “
Nonlinear Brake Control for Vehicle CW/CA Systems
,”
IEEE/ASME Trans. Mechatron.
,
6
(
1
), pp.
17
25
.
23.
Haggag
,
S.
, and
Abidou
,
D.
,
2012
, “
Impact of Pad Wear on the Pressure Dynamics of a Vehicle Braking System
,”
SAE
Technical Paper No. 2012-01-1897.
24.
Olesiak
,
Z.
,
Pyryev
,
Y.
, and
Yevtushenko
,
A.
,
1997
, “
Determination of Temperature and Wear During Braking
,”
Wear
,
210
(
2
), pp.
120
126
.
25.
Watson
,
M.
,
Byington
,
C.
,
Edwards
,
D.
, and
Amin
,
S.
,
2005
, “
Dynamic Modeling and Wear-Based Remaining Useful Life Prediction of High Power Clutch Systems
,”
Trans. Tribol.
,
48
(
2
), pp.
208
217
.
26.
Soderberg
,
A.
, and
Andersson
,
S.
,
2009
, “
Simulation of Wear and Contact Pressure Distribution at the Pad-to-Rotor Interface in a Disc Brake Using General Purpose Finite Element Analysis Software
,”
Wear
,
267
(
12
), pp.
2243
2251
.
27.
Ahmed
,
M. M. K.
,
Salem
,
A. H.
, and
Mostafa
,
R. A. A.
,
2014
, “
Control of an Electro-Mechanical Brake-By-Wire System Using Sliding Mode Control
,”
International Conference on Industry Academia Collaboration
, Vol.
59
,
Cairo
,
Egypt
.
28.
Guoliang
,
Z.
,
Can
,
Z.
, and
Junting
,
C.
,
2014
, “
Decoupled Terminal Sliding-Mode Control for a Class of Under-Actuated Mechanical Systems With Hybrid Sliding Surfaces
,”
Int. J. Innovative Comput., Inf. Control
,
10
(
6
), pp.
2011
2023
.
You do not currently have access to this content.