This paper introduces a decentralized shape and vibration controller for structures with large and potentially unknown system order, model-parameter uncertainty, and unknown disturbances. Controller implementation utilizes distributed, colocated, and independent actuator–sensor pairs. Controller design requires knowledge of the relative degrees of the actuator and sensor dynamics and upper bounds on the diagonal elements of system's high-frequency gain matrix. Closed-loop performance is determined by a parameter gain, which can be viewed as the cutoff frequency of a low-pass filter. For sufficiently large parameter gain, the closed-loop performance is arbitrarily small. Numerical examples are used to demonstrate the application and effectiveness of the decentralized controller, and we present experimental results for a setup consisting of a cantilever beam with piezoelectric actuators and strain-gauge sensors.

References

References
1.
Loh
,
C.
,
Lynch
,
J.
,
Lu
,
K.
,
Wang
,
Y.
,
Chang
,
C.
,
Lin
,
P.
, and
Yeh
,
T.
,
2007
, “
Experimental Verification of a Wireless Sensing and Control System for Structural Control Using MR Dampers
,”
Earthquake Eng. Struct. Dyn.
,
36
(
10
), pp.
1303
1328
.
2.
Swartz
,
R. A.
, and
Lynch
,
J.
,
2009
, “
Strategic Network Utilization in a Wireless Structural Control System for Seismically Excited Structures
,”
J. Struct. Eng.
,
135
(
5
), pp.
597
608
.
3.
Quiñonero
,
F.
,
Rossell
,
J.
, and
Karimi
,
H.
,
2011
, “
Semi-Decentralized Strategies in Structural Vibration Control
,”
J. Model. Identif. Control
,
32
(
2
), pp.
57
77
.
4.
Balas
,
M.
,
1979
, “
Direct Velocity Feedback Control of Large Space Structures
,”
J. Guid. Control Dyn.
,
2
(
3
), pp.
252
253
.
5.
Aubrun
,
J.
,
1980
, “
Theory of the Control of Structures by Low Authority Controllers
,”
J. Guid. Control
,
3
(
5
), pp.
444
451
.
6.
Preumont
,
A.
,
2011
,
Vibration Control of Active Structures
,
Springer
,
Berling, Heidelberg
.
7.
Pereira
,
E.
, and
Aphale
,
S.
,
2013
, “
Stability of Positive-Position Feedback Controllers With Low-Frequency Restrictions
,”
J. Sound Vib.
,
332
(
12
), pp.
2900
2909
.
8.
Goh
,
C. J.
, and
Caughey
,
T. K.
,
1985
, “
On the Stability Problem Caused by Finite Actuator Dynamics in Collocated Control of Large Space Structures
,”
Int. J. Control
,
43
(3), pp.
787
802
.
9.
Fanson
,
J. L.
, and
Caughey
,
T. K.
,
1990
, “
Positive Position Feedback Control for Large Space Structures
,”
AIAA J.
,
28
(4), pp.
717
724
.
10.
Lanzon
,
A.
, and
Petersen
,
I.
,
2008
, “
Stability Robustness of a Feedback Interconnection of Systems With Negative Imaginary Frequency Response
,”
IEEE Trans. Autom. Control
,
53
(
4
), pp.
1042
1046
.
11.
Moheimani
,
S.
,
Vautier
,
B.
, and
Bhikkaji
,
B.
,
2006
, “
Experimental Implementation of Extended Multivariable PPF Control on an Active Structure
,”
IEEE Trans. Control Syst. Technol.
,
14
(
3
), pp.
443
455
.
12.
Shin
,
C.
,
Hong
,
C.
, and
Jeong
,
W.
,
2012
, “
Active Vibration Control of Clamped Beams Using Positive Position Feedback Controllers With Moment Pair
,”
J. Mech. Sci. Technol.
,
26
(3), pp.
731
740
.
13.
Omidi
,
E.
, and
Mahmoodi
,
S. N.
,
2015
, “
Multimode Modified Positive Position Feedback to Control a Collocated Structure
,”
ASME J. Dyn. Syst. Meas. Control
,
137
(
5
), p.
051003
.
14.
Omidi
,
E.
, and
Mahmoodi
,
S. N.
,
2015
, “
Multiple Mode Spatial Vibration Reduction in Flexible Beams Using H2 and H∞ Modified Positive Position Feedback
,”
ASME J. Vib. Acoust.
,
137
(1), p.
011016
.
15.
Balas
,
M.
,
1978
, “
Active Control of Flexible Systems
,”
J. Optim. Theory Appl.
,
25
(
3
), pp.
415
436
.
16.
Liu
,
W.
, and
Hou
,
Z.
,
2004
, “
A New Approach to Suppress Spillover Instability in Structural Vibration Control
,”
J. Struct. Control Health Monit.
,
11
(
1
), pp.
37
53
.
17.
Kar
,
I.
, and
Seto
,
K.
,
1999
, “
Bending and Torsional Vibration Control of a Flexible Structure Using H∞ Based Approach
,”
Trans. Jpn. Soc. Mech. Eng.
,
56
, pp.
2680
2686
.
18.
Gavel
,
D. T.
, and
Siljak
,
D. D.
,
1989
, “
Decentralized Adaptive Control: Structural Conditions for Stability
,”
IEEE Trans. Autom. Control
,
34
(
4
), pp.
413
426
.
19.
Narendra
,
K. S.
,
Oleng
,
N. O.
, and
Mukhopadhyay
,
S.
,
2006
, “
Decentralised Adaptive Control With Partial Communication
,”
IEEE Proc. Control Theory Appl.
,
153
(
5
), pp.
546
555
.
20.
Pagilla
,
P. R.
,
Dwivedula
,
R. V.
, and
Siraskar
,
N. B.
,
2007
, “
A Decentralized Model Reference Adaptive Controller for Large-Scale Systems
,”
IEEE/ASME Trans. Mechatronics
,
12
(
2
), pp.
154
163
.
21.
Shi
,
L.
, and
Singh
,
S. K.
,
1992
, “
Decentralized Adaptive Controller Design for Large-Scale Systems With Higher-Order Interconnections
,”
IEEE Trans. Autom. Control
,
37
(8), pp.
1106
1118
.
22.
Ioannou
,
P.
, and
Kokotovic
,
P.
,
1985
, “
Decentralized Adaptive Control of Interconnected Systems With Reduced-Order Models
,”
Automatica
,
21
(
4
), pp.
401
412
.
23.
Ioannou
,
P.
,
1986
, “
Decentralized Adaptive Control of Interconnected Systems
,”
IEEE Trans. Autom. Control
,
31
(
4
), pp.
291
298
.
24.
Wen
,
C.
, and
Soh
,
Y. C.
,
1999
, “
Decentralized Model Reference Adaptive Control Without Restriction on Subsystem Relative Degrees
,”
IEEE Trans. Autom. Control
,
44
(7), pp.
1464
1469
.
25.
Hoagg
,
J. B.
, and
Seigler
,
T. M.
,
2013
, “
Filtered-Dynamic-Inversion Control for Unknown Minimum-Phase Systems With Unknown-and-Unmeasured Disturbances
,”
Int. J. Control
,
86
(
3
), pp.
449
468
.
26.
Seigler
,
T. M.
, and
Hoagg
,
J. B.
,
2013
, “
Filtered Dynamic Inversion for Vibration Control of Structures With Uncertainty
,”
ASME J. Dyn. Syst. Meas. Control
,
135
(4), p.
041017
.
27.
Hoagg
,
J. B.
, and
Seigler
,
T. M.
,
2015
Decentralized Filtered Dynamic Inversion for Uncertain Minimum-Phase System
,”
Automatica
61
, p.
192
200
.
28.
Doyle
,
J. C.
,
Francis
,
B. A.
, and
Tannenbaum
,
A. R.
,
2009
,
Feedback Control Theory
,
Dover Publications
,
New York
.
29.
Logan
,
D.
,
2007
,
A First Course in Finite Element Method
,
Cengage Press
,
Stamford, CT
.
30.
Meirovitch
,
L.
,
1996
,
Principles and Techniques of Vibrations
,
Prentice Hall
,
Upper Saddle River, NJ
.
31.
Tzou
,
H.
,
Johnson
,
D.
, and
Liu
,
K.
,
1999
, “
Damping Behavior of Cantilevered Strucutronic System With Boundary Control
,”
ASME J. Vib. Acoust.
,
121
(
3
), pp.
402
407
.
32.
Seigler
,
T. M.
,
Ghasemi
,
A. H.
, and
Salehian
,
A.
,
2011
, “
Distributed Actuation Requirements of Piezoelectric Structures Under Servoconstraints
,”
J. Intell. Mater. Syst. Struct.
,
22
(
11
), pp.
1227
1238
.
33.
Seigler
,
T. M.
, and
Ghasemi
,
A. H.
,
2012
, “
Specified Motion of Piezoelectrically Actuated Structures
,”
ASME J. Vib. Acoust.
,
134
(
2
), p.
021002
.
34.
Bernstein
,
D. S.
,
2009
,
Matrix Mathematics: Theory, Facts, and Formulas With Application to Linear Systems Theory
,
Princeton University Press
,
Princeton, NJ
.
You do not currently have access to this content.