In this paper, a simple fractional calculus-based control law is proposed for asymptotic tracking of ramp reference inputs in dynamical systems. Without need to add any zero to the loop transfer function, the proposed technique can guarantee asymptotic ramp tracking in plants having nonminimum phase zeros. The appropriate range for determining the parameters of the proposed control law is also specified. Moreover, the performance of the designed control system in tracking ramp reference inputs is illustrated by different numerical examples.

References

References
1.
Ortigueira
,
M. D.
,
2011
,
Fractional Calculus for Scientists and Engineers
, Lecture Notes in Electrical Engineering, Vol.
84
,
Springer
,
Dordrecht
.
2.
Kilbas
,
A. A.
,
Srivastava
,
H. M.
, and
Trujillo
,
J. J.
,
2006
,
Theory and Applications of Fractional Differential Equations
,
Elsevier
,
Amsterdam, The Netherlands
.
3.
Monje
,
C. A.
,
Chen
,
Y. Q.
,
Vinagre
,
B. M.
,
Xue
,
D.
, and
Feliu
,
V.
,
2010
,
Fractional-Order Systems and Controls: Fundamentals and Applications
,
Advanced Industrial Control Series, Springer-Verlag
,
London
.
4.
Tavazoei
,
M. S.
,
2014
, “
Time Response Analysis of Fractional-Order Control Systems: A Survey on Recent Results
,”
Fract. Calculus Appl. Anal.
,
17
(2), pp.
440
461
.
5.
Podlubny
,
I.
,
1999
, “
Fractional-Order Systems and PIλDμ-Controllers
,”
IEEE Trans. Autom. Control
,
44
(
1
), pp.
208
214
.
6.
Tavazoei
,
M. S.
,
2012
, “
From Traditional to Fractional PI Control: A Key for Generalization
,”
IEEE Ind. Electron. Mag.
,
6
(
3
), pp.
41
51
.
7.
Tavazoei
,
M. S.
, and
Tavakoli-Kakhki
,
M.
,
2014
, “
Compensation by Fractional-Order Phase-Lead/Lag Compensators
,”
IET Control Theory Appl.
,
8
, pp.
319
329
.
8.
Feliu-Batlle
,
N.
,
Rivas Pérez
,
R.
,
Castillo García
,
F. G.
, and
Sanchez Rodriguez
,
L.
,
2009
, “
Smith Predictor Based Robust Fractional-Order Control: Application to Water Distribution in a Main Irrigation Canal Pool
,”
J. Process Control
,
19
(
3
), pp.
506
519
.
9.
Tavakoli-Kakhki
,
M.
,
Haeri
,
M.
, and
Tavazoei
,
M. S.
,
2010
, “
Simple Fractional Order Model Structures and Their Applications in Control System Design
,”
Eur. J. Control
,
16
(6), pp.
680
694
.
10.
Bettayeb
,
M.
, and
Mansouri
,
R.
,
2014
, “
Fractional IMC-PID-Filter Controllers Design for Non Integer Order Systems
,”
J. Process Control
,
24
(
4
), pp.
261
271
.
11.
Wang
,
D. J.
, and
Gao
,
X. L.
,
2012
, “
H∞ Design With Fractional-Order PDμ Controllers
,”
Automatica
,
48
(
5
), pp.
974
977
.
12.
Padula
,
F.
,
Alcántara
,
S.
,
Vilanova
,
R.
, and
Visioli
,
A.
,
2013
, “
H∞ Control of Fractional Linear Systems
,”
Automatica
,
49
(
7
), pp.
2276
2280
.
13.
Maione
,
G.
,
2011
, “
High-Speed Digital Realizations of Fractional Operators in the Delta Domain
,”
IEEE Trans. Autom. Control
,
56
(
3
), pp.
697
702
.
14.
Chen
,
Y. Q.
, and
Moore
,
K. L.
,
2002
, “
Discretization Schemes for Fractional-Order Differentiators and Integrators
,”
IEEE Trans. Circuits Syst. I: Fundam. Theory Appl.
,
49
(
3
), pp.
363
367
.
15.
Maione
,
G.
,
2013
, “
Closed-Form Rational Approximations of Fractional, Analog and Digital Differentiators/Integrators
,”
IEEE J. Emerging Sel. Top. Circuits Syst.
,
3
(
3
), pp.
322
329
.
16.
Butler
,
H.
, and
Hoon
,
C.
,
2013
, “
Fractional-Order Filters for Active Damping in a Lithographic Tool
,”
Control Eng. Pract.
,
21
(
4
), pp.
413
419
.
17.
Chao
,
H.
,
Luo
,
Y.
,
Di
,
L.
, and
Chen
,
Y. Q.
,
2010
, “
Roll-Channel Fractional Order Controller Design for a Small Fixed-Wing Unmanned Aerial Vehicle
,”
Control Eng. Pract.
,
18
(
7
), pp.
761
772
.
18.
Maachou
,
A.
,
Malti
,
R.
,
Melchior
,
P.
,
Battaglia
,
J. L.
,
Oustaloup
,
A.
, and
Hay
,
B.
,
2014
, “
Nonlinear Thermal System Identification Using Fractional Volterra Series
,”
Control Eng. Pract.
,
29
, pp.
50
60
.
19.
Rhouma
,
A.
,
Bouani
,
F.
,
Bouzouita
,
B.
, and
Ksouri
,
M.
,
2014
, “
Model Predictive Control of Fractional Order Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
9
(
3
), p.
031011
.
20.
Tavazoei
,
M. S.
,
Haeri
,
M.
,
Jafari
,
S.
,
Bolouki
,
S.
, and
Siami
,
M.
,
2008
, “
Some Applications of Fractional Calculus in Suppression of Chaotic Oscillations
,”
IEEE Trans. Ind. Electron.
,
55
(
11
), pp.
4094
4101
.
21.
Luo
,
Y.
,
Chen
,
Y. Q.
,
Ahn
,
H. S.
, and
Pi
,
Y.
,
2010
, “
Fractional Order Robust Control for Cogging Effect Compensation in PMSM Position Servo Systems: Stability Analysis and Experiments
,”
Control Eng. Pract.
,
18
(
9
), pp.
1022
1036
.
22.
Luo
,
Y.
, and
Chen
,
Y. Q.
,
2012
,
Fractional Order Motion Controls
,
Wiley
,
Chichester
.
23.
Haeri
,
M.
, and
Tavazoei
,
M. S.
,
2011
, “
CDM Based Closed Loop Transfer Function Design for Ramp Input
,”
Trans. Inst. Meas. Control
,
33
(
5
), pp.
558
574
.
24.
Freudenberg
,
J. S.
, and
Looze
,
D. P.
,
1985
, “
Right Half Plane Poles and Zeros and Design Tradeoffs in Feedback Systems
,”
IEEE Trans. Autom. Control
,
30
(
6
), pp.
555
565
.
25.
Chen
,
J.
,
Qiu
,
L.
, and
Toker
,
O.
,
2000
, “
Limitations on Maximal Tracking Accuracy
,”
IEEE Trans. Autom. Control
,
45
(
2
), pp.
326
331
.
26.
Qiu
,
L.
, and
Davison
,
E. J.
,
1993
, “
Performance Limitations of Nonminimum Phase Systems in the Servomechanism Problem
,”
Automatica
,
29
(
2
), pp.
337
349
.
27.
Power
,
H. M.
,
1978
, “
Stability Problems in Using State Variable Feedback to Produce a Servomechanism of Specified Type Number
,”
Int. J. Control
,
27
(1), pp.
31
48
.
28.
O'Malley
,
M.
,
1991
, “
Algorithm to Produce a System of Type Number m Using State Variable Feedback
,”
IEE Proc. D
,
138
(
3
), pp.
193
198
.
29.
Štecha
,
J.
,
1998
, “
Robust and Non Robust Tracking
,”
Kybernetika
,
34
, pp.
203
216
.
30.
Tavazoei
,
M. S.
,
2013
, “
On Type Number Concept in Fractional-Order Systems
,”
Automatica
,
49
(
1
), pp.
301
304
.
31.
Bonnet
,
C.
, and
Partington
,
J. R.
,
2000
, “
Coprime Factorizations and Stability of Fractional Differential Systems
,”
Syst. Control Lett.
,
41
(
3
), pp.
167
174
.
32.
Matignon
,
D.
,
1998
, “
Stability Properties for Generalized Fractional Differential Systems
,”
ESIAM Proc.
,
5
, pp.
145
158
.
33.
Chen
,
J.
,
Lundberg
,
K. H.
,
Davison
,
D. E.
, and
Bernstein
,
D. S.
,
2007
, “
The Final Value Theorem Revisited Infinite Limits and Irrational Functions
,”
IEEE Control Syst. Mag.
,
27
(
3
), pp.
97
99
.
34.
Silva
,
G. J.
,
Datta
,
A.
, and
Bhattachaiyya
,
S. P.
,
2005
,
PID Controllers for Time-Delay Systems
,
Birkhäuser
,
Boston, MA
.
35.
Cao
,
Y. Y.
,
Sun
,
Y. X.
, and
Mao
,
W. J.
,
1998
, “
A New Necessary and Sufficient Condition for Static Output Feedback Stabilizability and Comments on “Stabilization via Static Output Feedback”
,”
IEEE Trans. Autom. Control
,
43
(8), pp.
1110
1111
.
36.
Kucera
,
V.
, and
De Souza
,
C. E.
,
1995
, “
A Necessary and Sufficient Condition Feedback Stabilizability
,”
Automatica
,
31
(
9
), pp.
1357
1359
.
37.
Gopal
,
M.
,
1993
,
Modern Control System Theory
,
2nd ed.
,
Wiley
,
New York
.
38.
Williams
II,
R. L.
, and
Lawrence
,
D. A.
,
2007
,
Linear State-Space Control Systems
,
Wiley
,
Hoboken, NJ
.
39.
Diethelm
,
K.
,
Ford
,
N. J.
, and
Freed
,
A. D.
,
2002
, “
A Predictor Corrector Approach for the Numerical Solution of Fractional Differential Equations
,”
Nonlinear Dyn.
,
29
, pp.
3
22
.
40.
Chen
,
B. M.
,
Saberi
,
A.
, and
Sannuti
,
P.
,
1992
, “
Necessary and Sufficient Conditions for a Nonminimum Phase Plant to Have a Recoverable Target Loop a Stable Compensator Design for LTR
,”
Automatica
,
28
(
3
), pp.
493
507
.
41.
Consolini
,
L.
, and
Piazzi
,
A.
,
2009
, “
Generalized Bang-Bang Control for Feedforward Constrained Regulation
,”
Automatica
,
45
(
10
), pp.
2234
2243
.
42.
Power
,
H. M.
,
1973
, “
General Strategy for Increasing Type Number of Control Systems
,”
Electron. Lett.
,
9
(26), pp.
614
616
.
43.
Astolfi
,
A.
, and
Colaneri
,
P.
,
2000
, “
Static Output Feedback Stabilization of Linear and Nonlinear Systems
,” 39th
IEEE
Conference on Decision and Control
,
Sydney
,
Australia
, Vol.
3
, pp.
2920
2925
.
44.
Schrodel
,
F.
,
Maschuw
,
J.
, and
Abel
,
D.
,
2012
, “
An Approach for Calculating All Stable PID Parameters for Time Delay Systems With Uncertain Parameters
,”
IFAC
Conference on Advances in PID Control
,
Brescia
,
Italy
, Mar. 28–30, pp.
739
744
.
You do not currently have access to this content.