A methodology for nonlinear recursive parameter estimation with parameter estimability analysis for physical and semiphysical engine models is presented. Orthogonal estimability analysis based on parameter sensitivity is employed with the purpose of evaluating a rank of estimable parameters given multiple sets of observation data that were acquired from a transient engine testing facility. The qualitative information gained from the estimability analysis is then used for estimating the estimable parameters by using two well-known nonlinear adaptive estimation algorithms known as extended Kalman filter (EKF) and unscented Kalman filter (UKF). The findings of this work contribute on understanding the real-world challenges which are involved in the effective implementation of system identification techniques suitable for online nonlinear estimation of parameters with physical interpretation.

References

References
1.
Isermann
,
R.
,
2014
,
Engine Modeling and Control: Modelling and Electronic Management of Internal Combustion Engines
,
Springer-Verlag, Berlin
.
2.
Zweiri
,
Y. H.
,
Whidbourne
,
J. F.
, and
Seneviratne
,
L. D.
,
2000
, “
Numerical Inversion of the Dynamic Model of a Single-Cylinder Diesel Engine
,”
Commun. Numer. Methods Eng.
,
16
(
7
), pp.
505
517
.
3.
Nickmehr
,
N.
,
2015
, “
System Identification of an Engine-Load Setup Using Grey-Box Model
,” Licentiate thesis, Linköping University, Linköping, Sweden.
4.
Yao
,
K. Z.
,
Shaw
,
B. M.
,
Kou
,
B.
,
McAuley
,
K. B.
, and
Bacon
,
D. W.
,
2003
, “
Modeling Ethylene/Butene Copolymerization With Multi‐Site Catalysts: Parameter Estimability and Experimental Design
,”
Polym. React. Eng.
,
11
(
3
), pp.
563
588
.
5.
Ljung
,
L.
, and
Söderström
,
T.
,
1985
,
Theory and Practice of Recursive Identification
,
MIT Press
,
Boston
.
6.
Souflas
,
I.
,
Pezouvanis
,
A.
,
Mason
,
B.
, and
Ebrahimi
,
K. M.
,
2014
, “
Dynamic Modeling of a Transient Engine Test Cell for Cold Engine Testing Applications
,”
ASME
Paper No. IMECE2014-36286.
7.
Vigild
,
C. W.
,
Chevalier
,
A. M. R.
, and
Hendricks
,
E.
,
2000
, “
Avoiding Signal Aliasing in Event Based Engine Control
,” SAE Technical Paper No. 2000-01-0268.
8.
Haykin
,
S.
,
2002
,
Kalman Filtering and Neural Networks
,
Wiley
,
Hoboken, NJ
.
9.
Julier
,
S.
,
Uhlmann
,
J.
, and
Durrant-Whyte
,
H. F.
,
2000
, “
A New Method for the Nonlinear Transformation of Means and Covariances in Filters and Estimators
,”
IEEE Trans. Autom. Control.
,
45
(
3
), pp.
477
482
.
You do not currently have access to this content.