It is aimed to obtain global finite time stabilization of a class of uncertain multi-input–multi-output (MIMO) nonlinear systems in the presence of bounded disturbances by applying nonsingular terminal sliding mode controllers. The considered nonlinear systems consist of double integrator subsystems which interact with each other. In the proposed methods, new terminal sliding surfaces are introduced along with design of proper control inputs. The terminal sliding surfaces are defined such that the global finite time stability of sliding mode dynamic is attained. The control inputs are designed to steer the states into sliding motion within finite time and retain them on the terminal sliding surfaces. The presented approaches guarantee the finite time convergence of states with low sensitivity to their initial values. The convergence rate could be adjusted by proper choice of existing arbitrary parameters in the suggested control schemes. Three numerical simulation examples including van de Pol system and two robotic manipulators are provided to confirm the applicability and effectiveness of the proposed control schemes.

References

References
1.
Polyakov
,
A.
, and
Fridmen
,
L.
,
2014
, “
Stability Notions and Lyapunov Functions for Sliding Mode Control Systems
,”
J. Franklin Inst.
,
351
(
4
), pp.
1831
1865
.
2.
Shah
,
M. Z.
,
Samar
,
R.
, and
Bhatti
,
A. I.
,
2015
, “
Guidance of Air Vehicles: A Sliding Mode Approach
,”
IEEE Trans. Control Syst. Technol.
,
23
(
1
), pp.
231
241
.
3.
Lu
,
K.
,
Xia
,
Y.
,
Fu
,
M.
, and
Yu
,
C.
, “
Adaptive Finite-Time Attitude Stabilization for Rigid Spacecraft With Actuator Faults and Saturation Constraints
,”
Int. J. Robust Nonlinear Control
(published online).
4.
Xie
,
L. B.
,
Shieh
,
L. S.
,
Wu
,
C. Y.
,
Tsai
,
J. S. H.
,
Canelon
,
J. I.
, and
Sinla
,
M.
,
2015
, “
Digital Sliding Mode Controller Design for Multiple Time-Delay Continuous-Time Transfer Function Matrices With a Long Input–Output Delay
,”
J. Process Control
,
25
(
1
), pp.
78
93
.
5.
Levant
,
A.
,
2010
, “
Chattering Analysis
,”
IEEE Trans. Autom. Control
,
55
(
6
), pp.
1380
1389
.
6.
Feng
,
Y.
,
Han
,
F.
, and
Yu
,
X.
,
2014
, “
Chattering Free Full-Order Sliding Mode Control
,”
Automatica
,
50
(
4
), pp.
1310
1314
.
7.
Bhat
,
S. P.
, and
Bernstein
,
D. S.
,
2000
, “
Finite-Time Stability of Continuous Autonomous Systems
,”
SIAM J. Control Optim.
,
38
(
3
), pp.
751
766
.
8.
Fu
,
J.
,
Ma
,
R.
, and
Chai
,
T.
,
2015
, “
Global Finite-Time Stabilization of a Class of Switched Nonlinear Systems With the Powers of Positive Odd Rational Numbers
,”
Automatica
,
54
(
1
), pp.
360
373
.
9.
Polyakov
,
A.
,
Efimov
,
D.
, and
Perruquetti
,
W.
,
2015
, “
Finite-Time and Fixed-Time Stabilization: Implicit Lyapunov Function Approach
,”
Automatica
,
51
(
1
), pp.
332
340
.
10.
Hu
,
Q.
,
Zhang
,
J.
, and
Friswell
,
M. I.
,
2015
, “
Finite-Time Coordinated Attitude Control for Spacecraft Formation Flying Under Input Saturation
,”
ASME J. Dyn. Syst., Meas., Control
,
137
(
6
), p.
061012
.
11.
Lan
,
Q.
,
Li
,
S.
,
Yang
,
J.
, and
Guo
,
L.
,
2014
, “
Finite-Time Control for Soft Landing on an Asteroid based on Line-of-Sight Angle
,”
J. Franklin Inst.
,
351
(
1
), pp.
383
398
.
12.
Bhat
,
S. P.
, and
Bernstein
,
D. S.
,
1998
, “
Continuous Finite-Time Stabilization of the Translational and Rotational Double Integrators
,”
IEEE Trans. Autom. Control
,
43
(
5
), pp.
678
682
.
13.
Hong
,
Y.
,
Huang
,
J.
, and
Xu
,
Y.
,
2001
, “
On an Output Feedback Finite-Time Stabilization Problem
,”
IEEE Trans. Autom. Control
,
46
(
2
), pp.
305
309
.
14.
Haddad
,
W. M.
, and
L'Afflitto
,
A.
,
2015
, “
Finite-Time Partial Stability and Stabilization, and Optimal Feedback Control
,”
J. Franklin Inst.
,
352
(
6
), pp.
2329
2357
.
15.
Hu
,
Q.
, and
Zhang
,
J.
,
2015
, “
Relative Position Finite-Time Coordinated Tracking Control of Spacecraft Formation Without Velocity Measurements
,”
ISA Trans.
,
54
(
1
), pp.
60
74
.
16.
Ghasemi
,
M.
,
Nersesov
,
S. G.
, and
Clayton
,
G.
,
2014
, “
Finite-Time Tracking Using Sliding Mode Control
,”
J. Franklin Inst.
,
351
(
5
), pp.
2966
2990
.
17.
Yu
,
S.
, and
Long
,
X.
,
2015
, “
Finite-Time Consensus for Second-Order Multi-Agent Systems With Disturbances by Integral Sliding Mode
,”
Automatica
,
54
(
1
), pp.
158
165
.
18.
Chen
,
S. Y.
, and
Lin
,
F. J.
,
2011
, “
Robust Nonsingular Terminal Sliding Mode Control for Nonlinear Magnetic Bearing System
,”
IEEE Trans. Control Syst. Technol.
,
19
(
3
), pp.
636
643
.
19.
Liu
,
S.
, and
Chen
,
L. Q.
,
2015
, “
Second-Order Terminal Sliding Mode Control for Networks Synchronization
,”
Nonlinear Dyn.
,
79
(
1
), pp.
205
213
.
20.
Mobayen
,
S.
,
2015
, “
Finite-Time Tracking Control of Chained-Form Non-Holonomic Systems With External Disturbances Based on Recursive Terminal Sliding Mode Method
,”
Nonlinear Dyn.
,
80
(
1–2
), pp.
669
683
.
21.
Mobayen
,
S.
,
2015
, “
Fast Terminal Sliding Mode Tracking of Non-Holonomic Systems With Exponential Decay Rate
,”
IET Control Theory Appl.
,
9
(
8
), pp.
1294
1301
.
22.
Yang
,
J.
,
Li
,
S.
,
Jinya
,
S.
, and
Yu
,
X.
,
2013
, “
Continuous Nonsingular Terminal Sliding Mode Control for Systems With Mismatched Disturbances
,”
Automatica
,
49
(
7
), pp.
2287
2291
.
23.
Qu
,
P.
,
Shao
,
C.
, and
Zhou
,
D.
,
2015
, “
Finite Time Convergence Guidance Law Accounting for Missile Autopilot
,”
ASME J. Dyn. Syst., Meas., Control
,
137
(
5
), p.
051014
.
24.
Zhao
,
L.
, and
Jia
,
Y.
,
2015
, “
Finite-Time Attitude Tracking Control for a Rigid Spacecraft Using Time-Varying Terminal Sliding Mode Techniques
,”
Int. J. Control
,
88
(
6
), pp.
1150
1162
.
25.
Feng
,
Y.
,
Yu
,
X.
, and
Han
,
F.
,
2013
, “
On Nonsingular Terminal Sliding-Mode Control of Nonlinear Systems
,”
Automatica
,
49
(
6
), pp.
1715
1722
.
26.
Yang
,
L.
, and
Yang
,
J.
,
2011
, “
Nonsingular Fast Terminal Sliding Mode Control for Nonlinear Dynamical Systems
,”
Int. J. Robust Nonlinear Control
,
21
(
16
), pp.
1865
1879
.
27.
Galicki
,
M.
,
2015
, “
Finite-Time Control of Robotic Manipulators
,”
Automatica
,
51
(
1
), pp.
49
54
.
28.
Chiu
,
C. S.
,
2012
, “
Derivative and Integral Terminal Sliding Mode Control for a Class of MIMO Nonlinear Systems
,”
Automatica
,
48
(
2
), pp.
316
326
.
29.
Li
,
H.
,
Dou
,
L.
, and
Su
,
Z.
,
2012
, “
Adaptive Dynamic Surface Based Nonsingular Fast Terminal Sliding Mode Control for Semi-Strict Feedback System
,”
ASME J. Dyn. Syst., Meas., Control
,
134
(
2
), p.
021011
.
30.
Chen
,
M.
,
Wu
,
Q. X.
, and
Cui
,
R. X.
,
2013
, “
Terminal Sliding Mode Tracking Control for a Class of SISO Uncertain Nonlinear Systems
,”
ISA Trans.
,
52
(
2
), pp.
198
206
.
31.
Liu
,
X.
, and
Han
,
Y.
,
2014
, “
Finite Time Control for MIMO Nonlinear System Based on Higher Order Sliding Mode
,”
ISA Trans.
,
53
(
6
), pp.
1838
1846
.
32.
Wang
,
X.
, and
Shao
,
C.
,
2013
, “
Finite Time Input-to-State Stability and Optimization of Switched Nonlinear Systems
,”
ASME J. Dyn. Syst., Meas., Control
,
135
(
4
), p.
041018
.
33.
Lu
,
K.
, and
Xia
,
Y.
,
2015
, “
Finite Time Attitude Stabilization for Rigid Spacecraft
,”
Int. J. Robust Nonlinear Control
,
25
(
1
), pp.
32
51
.
34.
Hong
,
Y.
,
Xu
,
Y.
, and
Huang
,
J.
,
2002
, “
Finite Time Control for Robot Manipulators
,”
Syst. Control Lett.
,
46
(
4
), pp.
243
253
.
35.
Yu
,
S.
,
Yu
,
X.
,
Shirinzadeh
,
B.
, and
Man
,
Z.
,
2005
, “
Continuous Finite Time Control for Robotic Manipulators With Terminal Sliding Mode
,”
Automatica
,
41
(
11
), pp.
1957
1964
.
36.
Du
,
H.
,
Li
,
S.
, and
Qian
,
C.
,
2011
, “
Finite Time Attitude Tracking Control of Spacecraft With Application to Attitude Synchronization
,”
IEEE Trans. Autom. Control
,
56
(
11
), pp.
2711
2717
.
37.
Zong
,
Q.
,
Zhao
,
Z. S.
, and
Zhang
,
J.
,
2010
, “
Higher Order Sliding Mode Control With Self-Tuning Law Based on Integral Sliding Mode
,”
IET Control Theory Appl.
,
4
(
7
), pp.
1282
1289
.
You do not currently have access to this content.