An analytical design for proportional integral derivative (PID) controller cascaded with a fractional-order filter is proposed for first-order unstable processes with time delay. The design algorithm is based on the internal model control (IMC) paradigm. A two degrees-of-freedom (2DOF) control structure is used to improve the performance of the closed-loop system. In the 2DOF control structure, an integer order controller is used to stabilize the inner-loop, and a fractional-order controller for the stabilized system is employed to improve the performance of the closed-loop system. The Walton–Marshall's method, which is applicable to quasi-polynomials, is then used to establish the internal stability condition of the closed-loop system (the fractional part of the controller in particular) and to seek the set of stabilizing proportional (P) or proportional-derivative (PD) controller parameters.

References

References
1.
Agrawal
,
P.
, and
Lim
,
H. C.
,
1984
, “
Analyses of Various Control Schemes for Continuous Bioreactors
,”
Bioprocess Parameter Control
(Advances in Biochemical Engineering/Biotechnology), Vol.
30
,
Springer
,
Berlin
, pp.
61
90
.
2.
Uppal
,
A.
,
Ray
,
W. H.
, and
Poore
,
A. B.
,
1974
, “
On the Dynamic Behavior of Continuous Stirred Tank Reactors
,”
Chem. Eng. Sci.
,
29
(
4
), pp.
967
985
.
3.
Lee
,
Y. K.
, and
Watkins
,
J. M.
,
2011
, “
Determination of all Stabilizing Fractional-Order PID Controllers
,”
American Control Conference
(
ACC
), San Francisco, CA, June 29–July 1, pp.
5007
5012
.
4.
Luo
,
Y.
, and
Chen
,
Y.
,
2012
, “
Stabilizing and Robust Fractional Order PI Controller Synthesis for First Order Plus Time Delay Systems
,”
Automatica
,
48
(
9
), pp.
2159
2167
.
5.
Zulfiqar
,
A.
, and
Ahmed
,
N.
,
2013
, “
Stability Regions of Fractional-Order PIαDβ Controllers With Dead-Time Plant
,”
2013 IEEE 9th International Conference on Emerging Technology
(
ICET
), Islamabad, Dec. 9–10, pp.
1
5
.
6.
Chen
,
Y.
, and
Moore
,
K. L.
,
2002
, “
Analytical Stability Bound for a Class of Delayed Fractional-Order Dynamic Systems
,”
Nonlinear Dyn.
,
29
(
1
), pp.
191
200
.
7.
Hamamci
,
S. E.
, and
Koksal
,
M.
,
2010
, “
Calculation of all Stabilizing Fractional-Order PD Controllers for Integrating Time Delay Systems
,”
Comput. Math. Appl.
,
59
(
5
), pp.
1621
1629
.
8.
Gao
,
Z.
,
Yan
,
M.
, and
Wei
,
J.
,
2014
, “
Robust Stabilizing Regions of Fractional-Order PDμ Controllers of Time-Delay Fractional-Order Systems
,”
J. Process Control
,
24
(
1
), pp.
37
47
.
9.
Hwang
,
C.
, and
Cheng
,
Y. C.
,
2006
, “
A Numerical Algorithm for Stability Testing of Fractional Delay Systems
,”
Automatica
,
42
(
5
), pp.
825
831
.
10.
Hamamci
,
S. E.
,
2007
, “
An Algorithm for Stabilization of Fractional-Order Time Delay Systems Using Fractional-Order PID Controllers
,”
IEEE Trans. Autom. Control
,
52
(
10
), pp.
1964
1969
.
11.
Merrikh-Bayat
,
F.
, and
Karimi-Ghartemani
,
M.
,
2009
, “
An Efficient Numerical Algorithm for Stability Testing of Fractional-Delay Systems
,”
ISA Trans.
,
48
(
1
), pp.
32
37
.
12.
Cheng
,
Y. C.
, and
Hwang
,
C.
,
2006
, “
Stabilization of Unstable First-Order Time-Delay Systems Using Fractional-Order PD Controllers
,”
J. Chin. Inst. Eng.
,
29
(
2
), pp.
241
249
.
13.
Bonnet
,
C.
, and
Partington
,
J. R.
,
2007
, “
Stabilization of Some Fractional Delay Systems of Neutral Type
,”
Automatica
,
43
(
12
), pp.
2047
2053
.
14.
Tavazoei
,
M. S.
, and
Haeri
,
M.
,
2008
, “
Stabilization of Unstable Fixed Points of Chaotic Fractional Order Systems by a State Fractional PI Controller
,”
Eur. J. Control
,
14
(
3
), pp.
247
257
.
15.
Kheirizad
,
I.
,
Jalali
,
A. A.
, and
Khandani
,
K.
,
2013
, “
Stabilization of All-Pole Unstable Delay Systems by Fractional-Order [PI] and [PD] Controllers
,”
Trans. Inst. Meas. Control
,
35
(
3
), pp.
257
266
.
16.
Muresan
,
C. I.
,
Ionescu
,
C.
,
Folea
,
S.
, and
De Keyser
,
R.
,
2014
, “
Fractional Order Control of Unstable Processes: The Magnetic Levitation Study Case
,”
Nonlinear Dyn.
,
80
(
4
), pp.
1761
1772
.
17.
Huang
,
H. P.
, and
Chen
,
C. C.
,
1997
, “
Control-System Synthesis for Open-Loop Unstable Process With Time Delay
,”
IEE Proc. Control Theory Appl.
,
144
(
4
), pp.
334
346
.
18.
Youla
,
D. C.
,
Bongiorno
,
J. J.
, Jr.
, and
Jabr
,
H.
,
1976
, “
Modern Wiener–Hopf Design of Optimal Controllers—Part I: The Single-Input-Output Case
,”
IEEE Trans. Autom. Control
,
21
(
1
), pp.
3
13
.
19.
Freudenberg
,
J. S.
, and
Looze
,
D. P.
,
1985
, “
Right Half Plane Poles and Zeros and Design Trade-offs in Feedback Systems
,”
IEEE Trans. Autom. Control
,
30
(
6
), pp.
555
565
.
20.
Freudenberg
,
J.
, and
Looze
,
D. P.
,
1987
, “
A Sensitivity Tradeoff for Plants With Time Delay
,”
IEEE Trans. Autom. Control
,
32
(
2
), pp.
99
104
.
21.
Looze
,
D. P.
, and
Freudenberg
,
J. S.
,
1991
, “
Limitations of Feedback Properties Imposed by Open-Loop Right Half Plane Poles
,”
IEEE Trans. Autom. Control
,
36
(
6
), pp.
736
739
.
22.
Xiang
,
C.
,
Wang
,
Q. G.
,
Lu
,
X.
,
Nguyen
,
L. A.
, and
Lee
,
T. H.
,
2007
, “
Stabilization of Second-Order Unstable Delay Processes by Simple Controllers
,”
J. Process Control
,
17
(
8
), pp.
675
682
.
23.
Dambrine
,
M.
, and
Richard
,
J. P.
,
1993
, “
Stability Analysis of Time-Delay Systems
,”
Dyn. Syst. Appl.
,
2
(
3
), pp.
405
414
.
24.
Walton
,
K.
, and
Marshall
,
J. E.
,
1987
, “
Direct Method for TDS Stability Analysis
,”
IEE Proc. Control Theory Appl.
,
134
(
2
), pp.
101
107
.
25.
Silva
,
G. J.
,
Datta
,
A.
, and
Bhattacharyya
,
S. P.
,
2005
,
PID Controllers for Time-Delay Systems
,
Birkhauser
,
Boston, MA
.
26.
Garcia
,
C. E.
, and
Morari
,
M.
,
1982
, “
Internal Model Control. A Unifying Review and Some New Results
,”
Ind. Eng. Chem. Process Des. Dev.
,
21
(
2
), pp.
308
323
.
27.
Rivera
,
D. E.
,
Morari
,
M.
, and
Skogestad
,
S.
,
1986
, “
Internal Model Control: PID Controller Design
,”
Ind. Eng. Chem. Process Des. Dev.
,
25
(
1
), pp.
252
265
.
28.
Morari
,
M.
, and
Zafiriou
,
E.
,
1991
,
Robust Process Control
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
29.
Vilanova
,
R.
,
2008
, “
IMC Based Robust PID Design: Tuning Guidelines and Automatic Tuning
,”
J. Process Control
,
18
(
1
), pp.
61
70
.
30.
Bettayeb
,
M.
, and
Mansouri
,
R.
,
2014
, “
Fractional IMC-PID-Filter Controllers Design for Non-Integer Order Systems
,”
J. Process Control
,
24
(
4
), pp.
261
271
.
31.
Bettayeb
,
M.
, and
Mansouri
,
R.
,
2014
, “
IMC-PID-Fractional-Order-Filter Controllers Design for Integer Order Systems
,”
ISA Trans.
,
53
(
5
), pp.
1620
1628
.
32.
Huang
,
H. P.
, and
Chen
,
C. C.
,
1999
, “
Auto-Tuning of PID Controllers for Second Order Unstable Process Having Dead Time
,”
J. Chem. Eng. Jpn.
,
32
(
4
), pp.
486
497
.
33.
Rotstein
,
G. E.
, and
Lewin
,
D. R.
,
1991
, “
Simple PI and PID Tuning for Open-Loop Unstable Systems
,”
Ind. Eng. Chem. Res.
,
30
(
8
), pp.
1864
1869
.
34.
Shamsuzzoha
,
M.
, and
Lee
,
M.
,
2008
, “
Analytical Design of Enhanced PID Filter Controller for Integrating and First Order Unstable Processes With Time Delay
,”
Chem. Eng. Sci.
,
63
(
10
), pp.
2717
2731
.
35.
Lee
,
Y.
,
Lee
,
J.
, and
Park
,
S.
,
2000
, “
PID Controller Tuning for Integrating and Unstable Processes With Time Delay
,”
Chem. Eng. Sci.
,
55
(
17
), pp.
3481
3493
.
36.
Lee
,
Y.
,
Park
,
S.
,
Lee
,
M.
, and
Brosilow
,
C.
,
1998
, “
PID Controller Tuning for Desired Closed-Loop Responses for SI/SO Systems
,”
AIChE J.
,
44
(
1
), pp.
106
115
.
You do not currently have access to this content.