This paper focuses on the issue of adaptive-robust stabilization of the Furuta's pendulum around unstable equilibrium where the dynamical model is unknown. The control scheme lies at the lack of the dynamical model as well as external disturbances. The stabilization analysis is based on the attractive ellipsoid method (AEM) for a class of uncertain nonlinear systems having “quasi-Lipschitz” nonlinearities. Even more, a modification of the AEM concept that permits to use online information obtained during the process is suggested here. This adjustment (or adaptation) is made only in some fixed sample times, so that the corresponding gain matrix of the robust controller is given on time interval too. Furthermore, under a specific “regularized persistent excitation condition,” the proposed method guarantees that the controlled system trajectories remain inside an ellipsoid of a minimal size (the minimal size is refereed to as the minimal trace of the corresponding inverse ellipsoidal matrix). Finally, the adaptive process describes a region of attraction (ROA) of the considered system under adaptive-robust nonlinear control law.

References

References
1.
Furuta
,
K.
,
Yamakita
,
M.
, and
Kobayashi
,
S.
,
1992
, “
Swing-Up Control of Inverted Pendulum Using Pseudo-State Feedback
,”
J. Syst. Control Eng.
,
206
(
6
), pp.
263
269
.
2.
Iwashiro
,
M.
,
Furuta
,
K.
, and
Astrom
,
K. J.
,
1996
, “
Energy Based Control of Pendulum
,”
IEEE
International Conference on Control Applications
, Dearborn, MI, Sept. 15–18, pp.
715
720
.
3.
Maalouf
,
D.
,
Moog
,
C.
,
Aoustin
,
Y.
, and
Li
,
S.
,
2015
, “
Classification of Two-Degree-of-Freedom Underactuated Mechanical Systems
,”
IET Control Theory Appl.
,
10
(
9
), pp.
1501
1510
.
4.
Fantoni
,
I.
, and
Lozano
,
R.
,
2002
,
Non-Linear Control of Underactuated Mechanical Systems
, Vol.
1
,
Springer-Verlag
,
London
.
5.
Ordaz
,
P.
,
Espinoza
,
E.
, and
Muñoz
,
F.
,
2014
, “
Research on Swing up Control Based on Energy for the Pendubot System
,”
ASME J. Dyn. Syst., Meas., Control
,
136
(
4
), p.
041018
.
6.
Machleidt
,
K.
,
Kroneis
,
J.
, and
Liu
,
S.
,
2007
, “
Stabilization of the Furuta Pendulum Using a Nonlinear Control Law Based on the Method of Controlled Lagrangians
,”
IEEE
International Symposium on Industrial Electronics
, Vigo, Spain, June 4–7, pp.
2129
2134
.
7.
Iwase
,
M.
,
Astom
,
K. J.
,
Furuta
,
K.
, and
Akesson
,
J.
,
2006
, “
Analysis of Safe Manual Control by Using Furuta Pendulum
,”
International Conference on Control Applications Munich
, Munich, Germany, Oct. 4–6, pp.
568
572
.
8.
Xin
,
X.
, and
Liu
,
Y.
,
2014
,
Control Design and Analysis for Underactuated Robotic Systems
,
1st ed.
,
Springer-Verlag
,
London
.
9.
Astrom
,
K. J.
, and
Wittenmark
,
B.
,
1994
,
Adaptive Control
,
2nd ed.
,
Addison-Wesley
,
New York
.
10.
Anderson
,
B. D. O.
,
1995
, “
Adaptive Systems, Lack of Persistency of Excitation and Bursting Phenomena
,”
Automatica
,
21
(
3
), pp.
247
258
.
11.
Ioannou
,
P. A.
, and
Sun
,
J.
,
1996
,
Robust Adaptive Control
,
Courier Corporation
, Amsterdam.
12.
Poliakov
,
A.
, and
Poznyak
,
A.
,
2011
, “
Invariant Ellipsoid Method for Minimization of Unmatched Disturbances Effects in Sliding Mode Control
,”
Automatica
,
47
(
7
), pp.
1450
1454
.
13.
Utkin
,
V.
,
1992
,
Sliding Modes in Control and Optimization
,
Springer-Verlag
,
Berlin
.
14.
Takeshi
,
T.
,
1990
, “
Stability Theorems of Perturbed Linear Ordinary Differential Equations
,”
J. Math. Anal. Appl.
,
149
(
2
), pp.
583
598
.
15.
Ordaz
,
P.
,
Alazki
,
H.
, and
Poznyak
,
A.
,
2013
, “
Attractive Ellipsoid Method With a Sample-Time Adjusted Feedback for Robust Bounded Output Stabilization
,”
Kybernetika
,
49
(
6
), pp.
911
934
.
16.
Ordaz
,
P.
, and
Poznyak
,
A.
,
2014
, “
‘KL’-Gain Adaptation for Attractive Ellipsoid Method
,”
IMA J. Math. Control Inf.
,
32
(
3
), pp.
447
469
.
17.
Ljung
,
L.
,
1998
,
System Identification: Theory for the User
,
Birkhauser
,
Boston
.
18.
Poznyak
,
A.
,
2010
,
Advanced Mathematical Tools for Automatic Control Engineers: Deterministic Techniques
, Vol.
1
,
Elsevier
,
Mineola, NY
.
19.
Sastry
,
S.
, and
Bodson
,
M.
,
1994
,
Adaptive Control: Stability, Convergence, and Robustness
,
Prentice-Hall
,
New York
.
20.
Blanchini
,
F.
, and
Miani
,
S.
,
2007
,
Set-Theoretic Methods in Control
,
Springer Science and Business Media
,
Boston, Basel, Berlin
.
21.
Haddad
,
W. M.
, and
Chellaboina
,
V.
,
2008
,
Nonlinear Dynamical Systems and Control: A Lyapunov-Based Approach
,
Princeton University Press
,
Princeton, NJ
.
22.
Bose
,
N.
, and
Li
,
C.
,
1968
, “
A Quadratic Form Representation of Polynomials of Several Variables and Its Applications
,”
IEEE Trans. Autom. Control
,
13
(
4
), pp.
447
448
.
23.
Hachicho
,
O.
, and
Tibken
,
B.
,
2002
, “
Estimating Domains of Attraction of a Class of Nonlinear Dynamical Systems With LMI Methods Based on the Theory of Moments
,”
41st IEEE Conference on Decision and Control
, Las Vegas, NV, Dec. 10–13, Vol. 3, pp.
3150
3155
.
24.
Levin
,
A.
,
1994
, “
An Analytical Method of Estimating the Domain of Attraction for Polynomial Differential Equations
,”
IEEE Trans. Autom. Control
,
39
(
12
), pp.
2471
2475
.
25.
Topcu
,
U.
,
Packard
,
A.
,
Seiler
,
P.
, and
Balas
,
G.
,
2009
, “
Robust Region-of-Attraction Estimation
,”
IEEE Trans. Autom. Control
,
55
(
1
), pp.
137
142
.
26.
Cruck
,
E.
,
Moitie
,
R.
, and
Suebe
,
N.
,
2001
, “
Estimation of Basins of Attraction for Uncertain Systems With Affine and Lipschitz Dynamics
,”
Dyn. Control
,
11
(
3
), pp.
211
227
.
27.
Hu
,
T.
, and
Lin
,
Z.
,
2003
, “
Composite Quadratic Lyapunov Functions for Constrained Control Systems
,”
IEEE Trans. Autom. Control
,
48
(
3
), pp.
440
450
.
28.
Peaucelle
,
D.
,
Henrion
,
D.
,
Labit
,
Y.
, and
Taitz
,
K.
,
2002
,
User's Guide for SeDuMi Interface 1.04
.
You do not currently have access to this content.