In this paper, a tracking control problem for discrete-time linear systems with actuator saturation is addressed. The reference signal is assumed to be generated by an external dynamics. First, a design condition of a controller parameterized by a single scheduling parameter is introduced. The controller includes a servo compensator to achieve zero steady-state error. Then, a control algorithm that guarantees closed-loop stability and makes the tracking error converge to zero is given. In the control algorithm, the controller state as well as the scheduling parameter is updated online so that the tracking control performance is improved. Then, it is shown that the decision problem of the scheduling parameter and the controller state can be transformed into a convex optimization problem with respect to a scalar parameter. Based on this fact, we propose a numerically efficient algorithm for solving the optimization problem. Further, we propose a method of modifying the control algorithm so that the asymptotic tracking property is ensured even when the numerical error exists in the optimal solution. A numerical example and an experimental result are provided to illustrate effectiveness of the proposed control method.

References

1.
Teel
,
A. R.
, and
Buffington
,
J. M.
,
1997
, “
Anti-Windup for an F-16's Daisy Chain Control Allocator
,”
AIAA
Paper No. 97-3606.
2.
Schuster
,
E.
,
Walker
,
M. L.
,
Humphreys
,
D. A.
, and
Krstic
,
M.
,
2005
, “
Plasma Vertical Stabilization With Actuation Constraints in the DIII-D Tokamak
,”
Automatica
,
41
(
7
), pp.
1173
1179
.
3.
Walsh
,
M. J.
,
Mahdi Alavi
,
S. M.
, and
Hayes
,
M. J.
,
2010
, “
Practical Assessment of Hardware Limitations on Power Aware Wireless Sensor Networks—An Anti-Windup Approach
,”
Int. J. Robust Nonlinear Control
,
20
(
2
), pp.
194
208
.
4.
Mayne
,
D. Q.
,
Rawlings
,
J. B.
,
Rao
,
C. V.
, and,
Scokaert
,
P. O. M.
,
2000
, “
Constrained Model Predictive Control: Stability and Optimality
,”
Automatica
,
36
(
6
), pp.
789
814
.
5.
Limon
,
D.
,
Alvarado
,
I.
,
Alamo
,
T.
, and
Camacho
,
E. F.
,
2008
, “
MPC for Tracking Piecewise Constant References for Constrained Linear Systems
,”
Automatica
,
44
(
9
), pp.
2382
2387
.
6.
Niu
,
W.
, and
Tomizuka
,
M.
,
1998
, “
An Anti-Windup Design for the Asymptotic Tracking of Linear System Subjected to Actuator Saturation
,”
American Control Conference
, Philadelphia, PA, June 21-26, pp.
1458
1462
.
7.
Saeki
,
M.
, and
Wada
,
N.
,
2002
, “
Synthesis of a Static Anti-Windup Compensator Via Linear Matrix Inequalities
,”
Int. J. Robust Nonlinear Control
,
12
(
10
), pp.
927
953
.
8.
Wu
,
W.
, and
Jayasuriya
,
S.
,
2010
, “
An Internal Model Control Anti-Windup Scheme With Improved Performance for Input Saturation Via Loop Shaping
,”
ASME J. Dyn. Syst., Meas., Control
,
132
(
1
), p.
014504
.
9.
Wada
,
N.
, and
Saeki
,
M.
,
2008
, “
An LMI Based Scheduling Algorithm for Constrained Stabilization Problems
,”
Syst. Control Lett.
,
57
(
3
), pp.
255
261
.
10.
Wada
,
N.
,
Saeki
,
M.
, and
Masubuchi
,
I.
,
2015
, “
A Constrained Tracking Control Algorithm for Linear Systems Based on a Spline-Type Parameter-Dependent Lyapunov Function
,”
Int. J. Robust Nonlinear Control
,
25
(
12
), pp.
1877
1896
.
11.
Clegg
,
J. C.
,
1958
, “
A Nonlinear Integrator for Servomechanisms
,”
Trans. AIEE, Part II, Appl. Ind.
,
77
(
1
), pp.
41
42
.
12.
Baños
,
A.
, and
Vidal
,
A.
,
2012
, “
Design of Reset Control Systems: The PI+CI Compensator
,”
ASME J. Dyn. Syst., Meas., Control
,
134
(
5
), p.
051003
.
13.
Yamaguchi
,
T.
,
Shishida
,
K.
,
Tohyama
,
S.
,
Soyama
,
Y.
,
Hosokawa
,
H.
,
Ohsawa
,
H.
,
Numasato
,
H.
,
Arai
,
T.
,
Tsuneta
,
K.
, and
Hirai
,
H.
,
1997
, “
A Mode-Switching Controller With Initial Value Compensation for Hard Disk Drive Servo Control
,”
Control Eng. Practice
,
5
(
11
), pp.
1501
1646
.
14.
Hespanha
,
J. P.
,
Santesso
,
P.
, and
Stewart
,
G.
,
2007
, “
Optimal Controller Initialization for Switching Between Stabilizing Controllers
,”
46th IEEE Conference on Decision and Control
, New Orleans, LA, Dec. 12-14, pp.
5634
5639
.
15.
Li
,
H.
,
Du
,
C.
,
Wang
,
Y.
, and,
Guo
,
Y.
,
2009
, “
Discrete-Time Optimal Reset Control for the Improvement of HDD Servo Control Transient Performance
,”
American Control Conference
, St. Louis, MO, June 10-12, pp.
4153
4158
.
16.
Wada
,
N.
,
2014
, “
Constrained Tracking Control by Continuous Resets of the State of a Gain-Scheduled Controller
,”
JSME Mech. Eng. J.
,
1
(
3
), p.
DR0012
.
17.
Boyd
,
S.
,
Ghaoui
,
L. E.
,
Feron
,
E.
, and
Balakrishnan
,
V.
,
1994
,
Linear Matrix Inequalities in System and Control Theory
,
SIAM
,
Philadelphia, PA
.
18.
Wada
,
N.
,
Miyahara
,
H.
, and
Saeki
,
M.
,
2014
, “
Constrained Tracking Control by Continuous Resets of the State of a Gain-Scheduled Controller and Its Experimental Verification
,”
International Conference on Advanced Mechatronic Systems
, pp.
89
94
.
19.
Davison
,
E. J.
, and
Goldenberg
,
A.
,
1975
, “
Robust Control of a General Servomechanism Problem: The Servo Compensator
,”
Automatica
,
11
(
5
), pp.
461
471
.
20.
Francis
,
B. A.
,
1975
, “
The Linear Multivariable Regulator Problem
,”
SIAM J. Control Optim.
,
15
(
3
), pp.
480
505
.
21.
Mantri
,
R.
,
Saberi
,
A.
,
Lin
,
Z.
, and
Stoorvogel
,
A. A.
,
1997
, “
Output Regulation for Linear Discrete-Time Systems Subject to Input Saturation
,”
Int. J. Robust Nonlinear Control
,
7
(
11
), pp.
1003
1021
.
22.
Balas
,
G.
,
Chiang
,
R.
,
Packard
, and
A.
,
Safonov
,
M.
,
2008
,
Robust Control Toolbox 3, User's Guide
,
The MathWorks
,
Natick, MA
.
23.
Hu
,
T.
,
Lin
,
Z.
, and
Chen
,
B. M.
,
2002
, “
An Analysis and Design Method for Linear Systems Subject to Actuator Saturation and Disturbance
,”
Automatica
,
38
(
2
), pp.
351
359
.
You do not currently have access to this content.