In this paper, a controller called dynamic matrix constrained variable structure controller (DM-CVSC) is proposed. The controller takes advantages of both dynamic matrix (DM) and constrained variable structure controllers. As a result, DM-CVSC is a robust trajectory tracking controller dealing with the constraints on control inputs and also makes decision based on the future behavior of the vehicle. The controller is applied to a linearized model of half-car suspension systems which are subject to different types of road disturbances and measurement noises. In this paper, it is shown that there is a simple formulation for calculating the range of sliding gains for single-input single-output (SISO) linear control systems. As for the multi-input multi-output (MIMO) linear control systems, the calculation of upper sliding gain profile for controller leads to a search problem. To show the efficiency of the proposed controller, it is applied to four different cases involving specific road disturbances and measurement noises. The performance of the proposed controller is compared to various control techniques.

References

References
1.
Aboud
,
W. S.
,
Haris
,
S. M.
, and
Yaacob
,
Y.
,
2014
, “
Advances in the Control of Mechatronic Suspension Systems
,”
J. Zhejiang Univ. Sci. C
,
15
(
10
), pp.
848
860
.
2.
Ataei
,
M.
,
Asadi
,
E.
,
Goodarzi
,
A.
,
Khajepour
,
A.
, and
Khamesee
,
M. B.
,
2015
, “
Multi-Objective Optimization of a Hybrid Electromagnetic Suspension System for Ride Comfort, Road Holding and Regenerated Power
,”
J. Vib. Control
(published online).
3.
Raju
,
G. V.
, and
Narayanan
,
S.
,
1991
, “
Optimal Estimation and Control of Non-Stationary Response of a Two-Degree-of-Freedom Vehicle Model
,”
J. Sound Vib.
,
149
(
3
), pp.
413
428
.
4.
ElMadany
,
M. M.
, and
Abduljabbar
,
Z. S.
,
1999
, “
Linear Quadratic Gaussian Control of a Quarter-Car Suspension
,”
Veh. Syst. Dyn.
,
32
(
6
), pp.
479
497
.
5.
Readman
,
M. C.
,
Corless
,
M.
,
Villegas
,
C.
, and
Shorten
,
R.
,
2010
, “
Adaptive Williams Filters for Active Vehicle Suspensions
,”
Trans. Inst. Meas. Control
,
32
(
6
), pp.
660
676
.
6.
Ekoru
,
J. E. D.
,
Dahunsi
,
O.
, and
Pedro
,
J. O.
,
2011
, “
PID Control of a Nonlinear Half-Car Active Suspension System Via Force Feedback
,”
AFRICON
, IEEE, Livingstone, Zambia, Sept. 13–15, pp.
1
6
.
7.
Konieczny
,
J.
,
2008
, “
Modelling of the Electrohydraulic Full Active Vehicle Suspension
,”
Eng. Trans.
,
56
(
3
), pp.
247
268
.
8.
ElMadany
,
M. M.
, and
Abduljabbar
,
Z.
,
1989
, “
On the Statistical Performance of Active and Semi-Active Car Suspension Systems
,”
Comput. Struct.
,
33
(
3
), pp.
785
790
.
9.
Alfi
,
A.
, and
Fateh
,
M. M.
,
2011
, “
Identification of Nonlinear Systems Using Modified Particle Swarm Optimisation: A Hydraulic Suspension System
,”
Veh. Syst. Dyn.
,
49
(
6
), pp.
871
887
.
10.
Dahunsi
,
O. A.
,
Pedro
,
J. O.
, and
Nyandoro
,
O. T.
,
2009
, “
Neural Network-Based Model Predictive Control of a Servo-Hydraulic Vehicle Suspension System
,”
AFRICON
2009, IEEE, Nairobi, Kenya, Sept. 23–25.
11.
Demir
,
O.
,
Keskin
,
I.
, and
Cetin
,
S.
,
2012
, “
Modeling and Control of a Nonlinear Half-Vehicle Suspension System: A Hybrid Fuzzy Logic Approach
,”
Nonlinear Dyn.
,
67
(
3
), pp.
2139
2151
.
12.
Alleyne
,
A.
, and
Hedrick
,
J. K.
,
1995
, “
Nonlinear Adaptive Control of Active Suspensions
,”
IEEE Trans. Control Syst. Technol.
,
3
(
1
), pp.
94
101
.
13.
Lin
,
J.-S.
, and
Huang
,
C.-J.
,
2004
, “
Nonlinear Backstepping Active Suspension Design Applied to a Half-Car Model
,”
Veh. Syst. Dyn.
,
42
(
6
), pp.
373
393
.
14.
Gopala Rao
,
L. V. V.
, and
Narayanan
,
S.
,
2008
, “
Preview Control of Random Response of a Half-Car Vehicle Model Traversing Rough Road
,”
J. Sound Vib.
,
310
(
1
), pp.
352
365
.
15.
Fateh
,
M. M.
, and
Alavi
,
S. S.
,
2009
, “
Impedance Control of an Active Suspension System
,”
Mechatronics
,
19
(
1
), pp.
134
140
.
16.
Fateh
,
M. M.
,
2010
, “
Robust Impedance Control of a Hydraulic Suspension System
,”
Int. J. Robust Nonlinear Control
,
20
(
8
), pp.
858
872
.
17.
Fateh
,
M. M.
, and
Zirkohi
,
M. M.
,
2011
, “
Adaptive Impedance Control of a Hydraulic Suspension System Using Particle Swarm Optimisation
,”
Veh. Syst. Dyn.
,
49
(
12
), pp.
1951
1965
.
18.
Onat
,
C.
,
Kucukdemiral
,
I. B.
,
Sivrioglu
,
S.
,
Yuksek
,
I.
, and
Cansever
,
G.
,
2009
, “
LPV Gain-Scheduling Controller Design for a Non-Linear Quarter-Vehicle Active Suspension System
,”
Trans. Inst. Meas. Control
,
31
(
1
), pp.
71
95
.
19.
Gopala Rao
,
L. V. V.
, and
Narayanan
,
S.
,
2009
, “
Sky-Hook Control of Nonlinear Quarter Car Model Traversing Rough Road Matching Performance of LQR Control
,”
J. Sound Vib.
,
323
(
3
), pp.
515
529
.
20.
Kamalakkannan
,
K.
,
Elayaperumal
,
A.
, and
Managlaramam
,
S.
,
2013
, “
Input Advanced Control of Semi Active Half Car Heave Model
,”
J. Mech. Sci. Technol.
,
27
(
5
), pp.
1225
1231
.
21.
Jin
,
Y.
, and
Luo
,
X.
,
2013
, “
Stochastic Optimal Active Control of a Half-Car Nonlinear Suspension Under Random Road Excitation
,”
Nonlinear Dyn.
,
72
(
1–2
), pp.
185
195
.
22.
Donahue
,
M. D.
,
2001
, “
Implementation of an Active Suspension, Preview Controller for Improved Ride Comfort
,” M.Sc. thesis, The University of California at Berkeley, Berkeley, CA.
23.
Shoukry
,
Y.
,
El-Shafie
,
M.
, and
Hammad
,
S.
,
2010
, “
Networked Embedded Generalized Predictive Controller for an Active Suspension System
,”
American Control Conference
(
ACC
), IEEE, Baltimore, MD, June 30–July 2, pp.
4570
4575
.
24.
Gohrle
,
C.
,
Schindler
,
A.
,
Wagner
,
A.
, and
Sawodny
,
O.
,
2013
, “
Model Predictive Control of Semi-Active and Active Suspension Systems With Available Road Preview
,”
European Control Conference
(
ECC
), IEEE, Zurich, Switzerland, July 17–19, pp.
1499
1504
.
25.
Maciejowski
,
J. M.
,
2002
,
Predictive Control: With Constraints
,
Prentice Hall
,
London
.
26.
Wu
,
S.
,
Zhang
,
R.
,
Lu
,
R.
, and
Gao
,
F.
,
2014
, “
Design of Dynamic Matrix Control Based PID for Residual Oil Outlet Temperature in a Coke Furnace
,”
Chemom. Intell. Lab. Syst.
,
134
, pp.
110
117
.
27.
Utkin
,
V.
,
1977
, “
Variable Structure Systems With Sliding Modes
,”
IEEE Trans. Autom. Control
,
22
(
2
), pp.
212
222
.
28.
Azad
,
N. L.
,
Sanketi
,
P. R.
, and
Hedrick
,
J. K.
,
2012
, “
Sliding Mode Control With Bounded Inputs and Its Application to Automotive Coldstart Emissions Reduction
,”
American Control Conference
(
ACC
), IEEE, Montreal, QC, Canada, June 27–29, pp.
2860
2865
.
29.
Dangor
,
M.
,
Dahunsi
,
O. A.
,
Pedro
,
J. O.
, and
Ali
,
M. M.
,
2014
, “
Evolutionary Algorithm-Based PID Controller Tuning for Nonlinear Quarter-Car Electrohydraulic Vehicle Suspensions
,”
Nonlinear Dyn.
,
78
(
4
), pp.
2795
2810
.
30.
Ekoru
,
J. E. D.
, and
Pedro
,
J. O.
,
2013
, “
Proportional-Integral-Derivative Control of Nonlinear Half-Car Electro-Hydraulic Suspension Systems
,”
J. Zhejiang Univ., Sci., A
,
14
(
6
), pp.
401
416
.
31.
Pedro
,
J. O.
,
Panday
,
A.
, and
Dala
,
L.
,
2013
, “
A Nonlinear Dynamic Inversion-Based Neurocontroller for Unmanned Combat Aerial Vehicles During Aerial Refuelling
,”
Int. J. Appl. Math. Comput. Sci.
,
23
(
1
), pp.
75
90
.
32.
Pedro
,
J.
, and
Dahunsi
,
O.
,
2011
, “
Neural Network Based Feedback Linearization Control of a Servo-Hydraulic Vehicle Suspension System
,”
Int. J. Appl. Math. Comput. Sci.
,
21
(
1
), pp.
137
147
.
33.
Slotine
,
J.-J. E.
, and
Li
,
W.
,
1991
,
Applied Nonlinear Control
, Vol.
199
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
34.
Nocedal
,
J.
, and
Wright
,
S.
,
2006
,
Numerical Optimization
,
Springer Science+Business Media
,
New York
.
35.
Azar
,
A. T.
, and
Zhu
,
Q.
,
2015
,
Advances and Applications in Sliding Mode Control Systems
,
Springer
,
Switzerland
.
36.
Madady
,
A.
,
2013
, “
An Extended PID Type Iterative Learning Control
,”
Int. J. Control Autom. Syst.
,
11
(
3
), pp.
470
481
.
37.
Sammier
,
D.
,
Sename
,
O.
, and
Dugard
,
L.
,
2003
, “
Skyhook and H8 Control of Semi-Active Suspensions: Some Practical Aspects
,”
Veh. Syst. Dyn.
,
39
(
4
), pp.
279
308
.
38.
Brand
,
M.
,
Shilpiekandula
,
V.
,
Yao
,
C.
,
Bortoff
,
S. A.
,
Nishiyama
,
T.
,
Yoshikawa
,
S.
, and
Iwasaki
,
T.
,
2011
, “
A Parallel Quadratic Programming Algorithm for Model Predictive Control
,”
18th World Congress of the International Federation of Automatic Control
(
IFAC
), Milan, Italy, Aug. 28–Sept. 2, Vol.
18
, pp.
1031
1039
.
You do not currently have access to this content.