Finite element model (FEM) is a broadly used numerical tool in structural damage detection. In such applications, damage parameters in FEM are estimated by minimizing the differences between experimental modal analysis data and the corresponding FEM model prediction. Very limited works exist on analyzing the identifiability of the FEM used in such applications. In this paper, the identifiability of FEM-based structural damage detection is investigated for undamped elastic beams. We theoretically proved that damage severity at a given location in a uniform beam is identifiable by reformulating the FEM into a linear time invariant (LTI) system. A numerical algorithm is also proposed for checking the identifiability issue of multiple damage locations. Numerical case studies are provided to validate the effectiveness and usefulness of the proposed framework.

References

References
1.
Hamzeloo
,
S. R.
,
Shamshirsaz
,
M.
, and
Rezaei
,
S. M.
,
2012
, “
Damage Detection on Hollow Cylinders by Electro-Mechanical Impedance Method: Experiments and Finite Element Modeling
,”
C. R. Mec.
,
340
(
9
), pp.
668
677
.
2.
Stubbs
,
N.
,
Broome
,
T. H.
, and
Osegueda
,
R.
,
1990
, “
Nondestructive Construction Error Detection in Large Space Structures
,”
AIAA J.
,
28
(
1
), pp.
146
152
.
3.
Stubbs
,
N.
, and
Osegueda
,
R.
,
1990
, “
Global Non-Destructive Damage Evaluation in Solids
,”
Int. J. Anal. Exp. Modal Anal.
,
5
, pp.
67
79
.
4.
Stubbs
,
N.
, and
Osegueda
,
R.
,
1990
, “
Global Damage Detection in Solids—Experimental Verification
,”
Int. J. Anal. Exp. Modal Anal.
,
5
, pp.
81
97
.
5.
Shiradhonkar
,
S. R.
, and
Shrikhande
,
M.
,
2011
, “
Seismic Damage Detection in a Building Frame Via Finite Element Model Updating
,”
Comput. Struct.
,
89
(
23–24
), pp.
2425
2438
.
6.
Mayes
,
R.
,
1991
, “
Error Localization Using Mode Shapes: An Application to a Two Link Robot Arm
,” Sandia National Labs., Albuquerque, NM, Report No. SAND-91-2297C; CONF-920234–1.
7.
Jafarkhani
,
R.
, and
Masri
,
S. F.
,
2011
, “
Finite Element Model Updating Using Evolutionary Strategy for Damage Detection
,”
Comput. Aided Civil Infrastruct. Eng.
,
26
(
3
), pp.
207
224
.
8.
Lee
,
J. J.
,
Lee
,
J. W.
,
Yi
,
J. H.
,
Yun
,
C. B.
, and
Jung
,
H. Y.
,
2005
, “
Neural Networks-Based Damage Detection for Bridges Considering Errors in Baseline Finite Element Models
,”
J. Sound Vib.
,
280
(
3
), pp.
555
578
.
9.
Wu
,
J. R.
, and
Li
,
Q. S.
,
2006
, “
Structural Parameter Identification and Damage Detection for a Steel Structure Using a Two-Stage Finite Element Model Updating Method
,”
J. Construct. Steel Res.
,
62
(
3
), pp.
231
239
.
10.
Pandey
,
A. K.
,
Biswas
,
M.
, and
Samman
,
M. M.
,
1991
, “
Damage Detection From Changes in Curvature Mode Shapes
,”
J. Sound Vib.
,
145
(
2
), pp.
321
332
.
11.
Chen
,
J.-C.
, and
Garba
,
J. A.
, “
On-Orbit Damage Assessment for Large Space Structures
,”
AIAA J.
,
26
(
9
), pp.
1119
1126
.
12.
Chen
,
J.-C.
, and
Garba
,
J. A.
,
1988
,
Structural Damage Assessment Using a System Identification Technique. Structural Safety Evaluation Based on System Identification Approaches
,
Vieweg+ Teubner Verlag
,
Berlin
, pp.
474
492
.
13.
Sanayei
,
M.
, and
Onipede
,
O.
,
1991
, “
Damage Assessment of Structures Using Static Test Data
,”
AIAA J.
,
29
(
7
), pp.
1174
1179
.
14.
Sanayei
,
M.
,
Onipede
,
O.
, and
Babu
,
S. R.
,
1992
, “
Selection of Noisy Measurement Locations for Error Reduction in Static Parameter Identification
,”
AIAA J.
,
30
(
9
), pp.
2299
2309
.
15.
Liu
,
P.-L.
,
1995
, “
Identification and Damage Detection of Trusses Using Modal Data
,”
J. Struct. Eng.
,
121
(
4
), pp.
599
608
.
16.
Lim
,
T. W.
,
1990
, “
A Submatrix Approach to Stiffness Using Modal Test Data
,”
AIAA J.
,
28
(
6
), pp.
1123
1130
.
17.
Lim
,
T. W.
,
1991
, “
Structural Damage Detection Using Modal Test Data
,”
AIAA J.
,
29
(
12
), pp.
2271
2274
.
18.
Lim
,
T. W.
,
1994
, “
Structural Damage Detection of a Planar Truss Structure Using a Constrained Eigenstructure Assignment
,”
35th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference
, Paper No. AIAA-94-1715-CP, pp.
336
346
.
19.
Zimmerman
,
D. C.
, and
Kaouk
,
M.
,
1994
, “
Structural Damage Detection Using a Minimum Rank Update Theory
,”
ASME J. Vib. Acoust.
,
116
(
2
), pp.
222
231
.
20.
Zimmerman
,
D. C.
,
Simmermacher
,
T.
, and
Kaouk
,
M.
,
1995
, “
Structural Damage Detection Using Frequency Response Functions
,”
13th International Modal Analysis Conference
, Vol.
2460
, pp.
375
381
.
21.
Zimmerman
,
D. C.
,
Kaouk
,
M.
, and
Simmermacher
,
T.
,
1995
, “
On the Role of Engineering Insight and Judgement Structural Damage Detection
,”
13th International Modal Analysis Conference
, Vol.
2460
, pp.
414
420
.
22.
Chang
,
J.-D.
, and
Guo
,
B.-Z.
,
2007
, “
Identification of Variable Spacial Coefficients for a Beam Equation From Boundary Measurements
,”
Automatica
,
43
(
4
), pp.
732
737
.
23.
Ju
,
F. D.
,
Akgun
,
M.
,
Paez
,
T. L.
, and
Wong
,
E. T.
,
1982
, “
Diagnosis of Fracture Damage in Simple Structures: A Modal Method
,” New Mexico University, Albuquerque Bureau of Engineering Research, Paper No. CE-62 (82) AFOSR-993-1.
24.
Nguyen
,
V. V.
, and
Wood
,
E. F.
,
1982
, “
Review and Unification of Linear Identifiability Concepts
,”
SIAM Rev.
,
24
(
1
), pp.
34
51
.
25.
Franco
,
G.
,
Betti
,
R.
, and
Longman
,
R. W.
,
2006
, “
On the Uniqueness of Solutions for the Identification of Linear Structural Systems
,”
ASME J. Appl. Mech.
,
73
(
1
), pp.
153
162
.
26.
De Angelis
,
M.
,
Lus
,
H.
,
Betti
,
R.
, and
Longman
,
R. W.
,
2002
, “
Extracting Physical Parameters of Mechanical Models From Identified State-Space Representations
,”
ASME J. Appl. Mech.
,
69
(
5
), pp.
617
625
.
27.
Sun
,
H.
,
Luş
,
H.
, and
Betti
,
R.
,
2013
, “
Identification of Structural Models Using a Modified Artificial Bee Colony Algorithm
,”
Comput. Struct.
,
116
, pp.
59
74
.
28.
Reynders
,
E.
,
2012
, “
System Identification Methods for (Operational) Modal Analysis: Review and Comparison
,”
Arch. Comput. Methods Eng.
,
19
(
1
), pp.
51
124
.
29.
Simani
,
S.
,
Fantuzzi
,
C.
, and
Patton
,
R. J.
,
2013
,
Model-Based Fault Diagnosis in Dynamic Systems Using Identification Techniques
,
Springer Science & Business Media
,
Berlin
.
30.
Rugh
,
W. J.
,
1996
,
Linear System Theory
, Vol.
2
,
Prentice Hall
,
Upper Saddle River, NJ
.
31.
Segerlind
,
L. J.
, and
Saunders
,
H.
,
1987
,
Applied Finite Element Analysis
,
Wiley
,
New York
.
32.
Meurant
,
G.
,
1992
, “
A Review on the Inverse of Symmetric Tridiagonal and Block Tridiagonal Matrices
,”
SIAM J. Matrix Anal. Appl.
,
13
(
3
), pp.
707
728
.
33.
Nabben
,
R.
,
1999
, “
Decay Rates of the Inverse of Nonsymmetric Tridiagonal and Band Matrices
,”
SIAM J. Matrix Anal. Appl.
,
20
(
3
), pp.
820
837
.
34.
Demko
,
S.
,
Moss
,
W. F.
, and
Smith
,
P. W.
,
1984
, “
Decay Rates for Inverses of Band Matrices
,”
Math. Comput.
,
43
(
168
), pp.
491
499
.
35.
Eijkhout
,
V.
, and
Polman
,
B.
,
1988
, “
Decay Rates of Inverses of Banded M-Matrices That are Near to Toeplitz Matrices
,”
Linear Algebra Appl.
,
109
, pp.
247
277
.
36.
Yamamoto
,
T.
, and
Ikebe
,
Y.
,
1979
, “
Inversion of Band Matrices
,”
Linear Algebra Appl.
,
24
, pp.
105
111
.
37.
Balageas
,
D.
,
Fritzen
,
C.-P.
, and
Güemes
,
A.
, eds.,
2006
,
Structural Health Monitoring
, Vol.
493
,
ISTE
,
London, UK
.
38.
Wang
,
S. Q.
, and
Li
,
H. J.
,
2012
, “
Assessment of Structural Damage Using Natural Frequency Changes
,”
Acta Mech. Sinica
,
28
(
1
), pp.
118
127
.
39.
Salawu
,
O. S.
,
1997
, “
Detection of Structural Damage Through Changes in Frequency: A Review
,”
Eng. Struct.
,
19
(
9
), pp.
718
723
.
40.
Lo
,
S. S.
,
Philippe
,
B.
, and
Sameh
,
A.
,
1987
, “
A Multiprocessor Algorithm for the Symmetric Tridiagonal Eigenvalue Problem
,”
SIAM J. Sci. Stat. Comput.
,
8
(
2
), pp.
s155
s165
.
41.
Trefftz
,
C.
,
Huang
,
C. C.
,
McKinley
,
P. K.
,
Li
,
T. Y.
, and
Zeng
,
Z.
,
1995
, “
A Scalable Eigenvalue Solver for Symmetric Tridiagonal Matrices
,”
Parallel Comput.
,
21
(
8
), pp.
1213
1240
.
42.
Fernandez
,
F. A.
,
Davies
,
J. B.
,
Zhu
,
S.
, and
Lu
,
Y.
,
1991
, “
Sparse Matrix Eigenvalue Solver for Finite Element Solution of Dielectric Waveguides
,”
Electron. Lett.
,
27
(
20
), pp.
1824
1826
.
43.
Gruber
,
R.
,
1980
, “
HYMNISBLOCK—Eigenvalue Solver for Blocked Matrices
,”
Comput. Phys. Commun.
,
20
(
3
), pp.
421
428
.
44.
Demmel
,
J. W.
,
Marques
,
O. A.
,
Parlett
,
B. N.
, and
Vömel
,
C.
,
2008
, “
Performance and Accuracy of LAPACK's Symmetric Tridiagonal Eigensolvers
,”
SIAM J. Sci. Comput.
,
30
(
3
), pp.
1508
1526
.
45.
Peng
,
D.
,
Middendorf
,
N.
,
Weigend
,
F.
, and
Reiher
,
M.
,
2013
, “
An Efficient Implementation of Two-Component Relativistic Exact-Decoupling Methods for Large Molecules
,”
J. Chem. Phys.
,
138
(
18
), p.
184105
.
46.
Beyn
,
W. J.
,
2012
, “
An Integral Method for Solving Nonlinear Eigenvalue Problems
,”
Linear Algebra Appl.
,
436
(
10
), pp.
3839
3863
.
47.
Davidson
,
G. G.
,
Evans
,
T. M.
,
Jarrell
,
J. J.
,
Hamilton
,
S. P.
,
Pandy
,
T. M.
, and
Slaybaugh
,
R. N.
,
2014
, “
Massively Parallel, Three-Dimensional Transport Solutions for the k-Eigenvalue Problem
,”
Nucl. Sci. Eng.
,
177
(
2
), pp.
111
125
.
48.
Barrett
,
W. W.
,
1979
, “
A Theorem on Inverse of Tridiagonal Matrices
,”
Linear Algebra Appl.
,
27
, pp.
211
217
.
49.
Engwerda
,
J. C.
,
Ran
,
A. M.
, and
Rijkeboer
,
A. L.
,
1993
, “
Necessary and Sufficient Conditions for the Existence of a Positive Definite Solution of the Matrix Equation X + A * X − 1A = Q
,”
Linear Algebra Appl.
,
186
, pp.
255
275
.
50.
Adams
,
R. D.
,
Cawley
,
P.
,
Pye
,
C. J.
, and
Stone
,
B. J.
,
1978
, “
A Vibration Technique for Non-Destructively Assessing the Integrity of Structures
,”
J. Mech. Eng. Sci.
,
20
(
2
), pp.
93
100
.
51.
Qian
,
G.-L.
,
Gu
,
S.-N.
, and
Jiang
,
J.-S.
,
1990
, “
The Dynamic Behaviour and Crack Detection of a Beam With a Crack
,”
J. Sound Vib.
,
138
(
2
), pp.
233
243
.
52.
Gillich
,
G.-R.
,
Praisach
,
Z.-I.
, and
Negru
,
I.
,
2012
, “
The Relationship Between Changes of Deflection and Natural Frequencies of Damaged Beams
,”
Advances in Remote Sensing, Finite Differences and Information Security: (F-And-B ′12),(REMOTE ′12), (ISP ′12)
,
E.
Scutelnicu
,
L.
Lazic
, and
P. F.
de Arroyabe
, eds.,
Wseas LLC
,
Stevens Point, WI
, pp.
38
42
.
53.
Hearn
,
G.
, and
Testa
,
R. B.
,
1991
, “
Modal Analysis for Damage Detection in Structures
,”
J. Struct. Eng.
,
117
(
10
), pp.
3042
3063
.
54.
Hassiotis
,
S.
,
2000
, “
Identification of Damage Using Natural Frequencies and Markov Parameters
,”
Comput. Struct.
,
74
(
3
), pp.
365
373
.
55.
Li
,
R. C.
,
2013
, “
Rayleigh Quotient Based Optimization Methods for Eigenvalue Problems
,”
Summary of Lectures Delivered at Gene Golub SIAM Summer School
,
World Scientific Publishing Company
,
Singapore
.
56.
Kato
,
T.
,
2012
,
Perturbation Theory for Linear Operators
,
Springer Science & Business Media
,
Berlin
.
This content is only available via PDF.
You do not currently have access to this content.