Various modeling techniques have been proposed in order to make modeling a more systematic procedure and to facilitate the development of modeling software that provide users, even experienced users, more ease when developing good models for control and design. The author has previously developed an energy-based modeling metric called “element activity” that was implemented in the model order reduction algorithm (MORA). While MORA was originally developed for the reduction of nonlinear models, the purpose of this paper is to gain insight into this methodology when applied to the reduction of linear models. Toward this end, the steady-state response to sinusoidal inputs is considered. Element activity is calculated analytically for any given excitation frequency, and a series of reduced models, which depend on the excitation frequency content, are generated. The results show through a quarter-car vehicle model that MORA generates a series of models whose spectral radius increases, as successively lower activity elements are included. It is demonstrated that low activity elements are related with high-frequency dynamics.

References

References
1.
Wilson
,
B. H.
, and
Stein
,
J. L.
,
1995
, “
An Algorithm for Obtaining Proper Models of Distributed and Discrete Systems
,”
ASME J. Dyn. Syst., Meas., Control
,
117
(
4
), pp.
534
540
.
2.
Ferris
,
J. B.
,
Stein
,
J. L.
, and
Bernitsas
,
M. M.
,
1998
, “
Development of Proper Models of Hybrid Systems
,”
ASME J. Dyn. Syst., Meas., Control
,
120
(
3
), pp.
328
333
.
3.
Ferris
,
J. B.
, and
Stein
,
J. L.
,
1995
, “
Development of Proper Models of Hybrid Systems: A Bond Graph Formulation
,”
International Conference on Bond Graph Modeling
, Las Vegas, NV, Jan. 15–18, pp.
43
48
.
4.
Walker
,
D. G.
,
Stein
,
J. L.
, and
Ulsoy
,
A. G.
,
2000
, “
An Input–Output Criterion for Linear Model Deduction
,”
ASME J. Dyn. Syst., Meas., Control
,
122
(
3
), pp.
507
513
.
5.
Stein
,
J. L.
, and
Louca
,
L. S.
,
1996
, “
A Template-Based Modeling Approach for System Design: Theory and Implementation
,”
Trans. Soc. Comput. Simul. Int.
,
13
(
2
), pp.
87
101
.
6.
Fertis
,
D. G.
,
1995
,
Mechanical and Structural Vibrations
,
Wiley
,
New York
.
7.
Kokotovic
,
P.
, and
Sannuti
,
P.
,
1968
, “
Singular Perturbation Method for Reducing Model Order in Optimal Control Design
,”
IEEE Trans. Autom. Control
,
13
(
4
), pp.
377
384
.
8.
Kokotovic
,
P. V.
,
O'Malley
,
R. E.
, Jr.
, and
Sannuti
,
P.
,
1976
, “
Singular Perturbations and Order Reduction in Control Theory—An Overview
,”
Automatica
,
12
(
2
), pp.
123
132
.
9.
Margolis
,
D. L.
, and
Young
,
G. E.
,
1977
, “
Reduction of Models of Large Scale Lumped Structures Using Normal Modes and Bond Graphs
,”
J. Franklin Inst.
,
304
(
1
), pp.
65
79
.
10.
Karhunen
,
K.
,
1946
, “
Zur Spektraltheorie Stochastischer Prozesse
,”
Ann. Acad. Sci. Fenn.
,
1
, p.
37
.
11.
Loève
,
M. M.
,
1955
,
Probability Theory
,
Van Nostrand
,
Princeton, NJ
.
12.
Moore
,
B. C.
,
1981
, “
Principal Component Analysis in Linear Systems: Controllability, Observability, and Model Reduction
,”
IEEE Trans. Autom. Control
,
26
(
1
), pp.
17
32
.
13.
Skelton
,
R. E.
, and
Yousuff
,
A.
,
1983
, “
Component Cost Analysis of Large Scale Systems
,”
Int. J. Control
,
37
(
2
), pp.
285
304
.
14.
Kung
,
S.
,
1978
, “
A New Identification and Model Reduction Algorithm Via Singular Value Decompositions
,”
12th Asilomar Conference on Circuits, Systems and Computers
, Pacific Grove, CA, Nov. 6–8, IEEE, New York, pp.
705
714
.
15.
Kung
,
S.-Y.
, and
Lin
,
D. W.
,
1981
, “
Optimal Hankel-Norm Model Reductions: Multivariable Systems
,”
IEEE Trans. Autom. Control
,
26
(
4
), pp.
832
852
.
16.
Safonov
,
M. G.
,
Chiang
,
R. Y.
, and
Limebeer
,
D. J. N.
,
1990
, “
Optimal Hankel Model Reduction for Nonminimal Systems
,”
IEEE Trans. Autom. Control
,
35
(
4
), pp.
496
502
.
17.
Ersal
,
T.
,
Fathy
,
H. K.
, and
Stein
,
J. L.
,
2009
, “
Realization-Preserving Structure and Order Reduction of Nonlinear Energetic System Models Using Energy Trajectory Correlations
,”
ASME J. Dyn. Syst., Meas., Control
,
131
(
3
), p.
031004
.
18.
Ersal
,
T.
,
Kittirungsi
,
B.
,
Fathy
,
H. K.
, and
Stein
,
J. L.
,
2009
, “
Model Reduction in Vehicle Dynamics Using Importance Analysis
,”
Veh. Syst. Dyn.
,
47
(
7
), pp.
851
865
.
19.
Louca
,
L. S.
,
Stein
,
J. L.
, and
Hulbert
,
G. M.
,
2010
, “
Energy-Based Model Reduction Methodology for Automated Modeling
,”
ASME J. Dyn. Syst., Meas., Control
,
132
(
6
), p.
061202
.
20.
Ersal
,
T.
,
Fathy
,
H.
,
Louca
,
L. S.
,
Rideout
,
D. G.
, and
Stein
,
J. L.
,
2008
, “
A Review of Proper Modeling Techniques
,”
ASME J. Dyn. Syst., Meas., Control
,
130
(
6
), p.
061008
.
21.
Sendur
,
P.
,
Stein
,
J. L.
,
Louca
,
L. S.
, and
Peng
,
H.
,
2002
, “
A Model Accuracy and Validation Algorithm
,”
ASME
Paper No. IMECE2002-39580.
22.
Sendur
,
P.
,
Stein
,
J. L.
,
Peng
,
H.
, and
Louca
,
L. S.
,
2003
, “
An Algorithm for the Selection of Physical System Model Order Based on Desired State Accuracy and Computational Efficiency
,”
ASME
Paper No. IMECE2003-41529.
23.
Louca
,
L. S.
,
Rideout
,
D. G.
,
Stein
,
J. L.
, and
Hulbert
,
G. M.
,
2004
, “
Generating Proper Dynamic Models for Truck Mobility and Handling
,”
Int. J. Heavy Veh. Syst.
,
11
(
3–4
), pp.
209
236
.
24.
Louca
,
L. S.
, and
Yildir
,
B. U.
,
2006
, “
Modelling and Reduction Techniques for Studies of Integrated Hybrid Vehicle Systems
,”
Math. Comput. Modell. Dyn. Syst.
,
12
(
2–3
), pp.
203
218
.
25.
Geoff Rideout
,
D.
,
Stein
,
J. L.
, and
Louca
,
L. S.
,
2007
, “
Systematic Identification of Decoupling in Dynamic System Models
,”
ASME J. Dyn. Syst., Meas., Control
,
129
(
4
), pp.
503
513
.
26.
Golub
,
G. H.
, and
Van Loan
,
C. F.
,
1983
,
Matrix Computations
,
North Oxford Academic
,
Oxford, UK
.
27.
Kim
,
H. M.
,
Kokkolaras
,
M.
,
Louca
,
L. S.
,
Delagrammatikas
,
G. J.
,
Michelena
,
N. F.
,
Filipi
,
Z. S.
,
Papalambros
,
P. Y.
,
Stein
,
J. L.
, and
Assanis
,
D. N.
,
2002
, “
Target Cascading in Vehicle Redesign: A Class VI Truck Study
,”
Int. J. Veh. Des.
,
29
(
3
), pp.
199
225
.
28.
Filipi
,
Z. S.
,
Louca
,
L. S.
,
Daran
,
B.
,
Lin
,
C.-C.
,
Yildir
,
B. U.
,
Wu
,
B.
,
Kokkolaras
,
M.
,
Assanis
,
D. N.
,
Peng
,
H.
,
Papalambros
,
P. Y.
,
Stein
,
J. L.
,
Szkubiel
,
D.
, and
Chapp
,
R.
,
2004
, “
Combined Optimisation of Design and Power Management of the Hydraulic Hybrid Propulsion System for the 6 × 6 Medium Truck
,”
Int. J. Heavy Veh. Syst.
,
11
(
3–4
), pp.
372
402
.
29.
Louca
,
L. S.
, and
Stein
,
J. L.
,
2002
, “
Ideal Physical Element Representation From Reduced Bond Graphs
,”
Proc. Inst. Mech. Eng., Part I
,
216
(
1
), pp.
73
83
.
30.
Kane
,
T. R.
,
Likins
,
P. W.
, and
Levinson
,
D. A.
,
1983
,
Spacecraft Dynamics
,
McGraw-Hill
,
New York
.
31.
Rosenberg
,
R. C.
,
1971
, “
State-Space Formulation for Bond Graph Models of Multiport Systems
,”
ASME J. Dyn. Syst., Meas., Control
,
93
(
1
), pp.
35
40
.
32.
Karnopp
,
D. C.
,
Margolis
,
D. L.
, and
Rosenberg
,
R. C.
,
1990
,
System Dynamics: A Unified Approach
,
Wiley-Interscience
,
New York
.
33.
Rosenberg
,
R. C.
, and
Karnopp
,
D. C.
,
1983
,
Introduction to Physical System Dynamics
,
McGraw-Hill
,
New York
.
34.
Borutzky
,
W.
,
2004
,
Bond Graphs—A Methodology for Modeling Multidisciplinary Dynamic Systems
(Frontiers in Simulation, Vol. FS-14),
SCS Publishing House
,
Erlangen, Germany
.
35.
Brown
,
F. T.
,
2006
,
Engineering System Dynamics: A Unified Graph-Centered Approach
,
2nd ed.
,
CRC Press
,
Boca Raton, FL
.
36.
Xian
,
B.
,
Jalili
,
N.
,
Dawson
,
D. M.
, and
Fang
,
Y.
,
2003
, “
Adaptive Tracking Control of Linear Uncertain Mechanical Systems Subjected to Unknown Sinusoidal Disturbances
,”
ASME J. Dyn. Syst., Meas., Control
,
125
(
1
), pp.
129
134
.
37.
Zhang
,
F.
,
Keikha
,
E.
,
Shahsavari
,
B.
, and
Horowitz
,
R.
,
2014
, “
Adaptive Mismatch Compensation for Rate Integrating Vibratory Gyroscopes With Improved Convergence Rate
,”
ASME
Paper No. DSCC2014-6053.
38.
Shahsavari
,
B.
,
Keikha
,
E.
,
Zhang
,
F.
, and
Horowitz
,
R.
,
2015
, “
Adaptive Repetitive Control Design With Online Secondary Path Modeling and Application to Bit-Patterned Media Recording
,”
IEEE Trans. Magn.
,
51
(
4
), p.
9401108
.
39.
Majjad
,
R.
,
1997
, “
Estimation of Suspension Parameters
,”
IEEE
International Conference on Control Applications
, Hartford, CT, Oct. 5–6, pp.
522
527
.
40.
Kim
,
C.
, and
Ro
,
P. I.
,
2000
, “
Reduced-Order Modelling and Parameter Estimation for a Quarter-Car Suspension System
,”
Proc. Inst. Mech. Eng., Part D
,
214
(
8
), pp.
851
864
.
41.
Verros
,
G.
,
Natsiavas
,
S.
, and
Papadimitriou
,
C.
,
2005
, “
Design Optimization of Quarter-Car Models With Passive and Semi-Active Suspensions Under Random Road Excitation
,”
J. Vib. Control
,
11
(
5
), pp.
581
606
.
42.
Maher
,
D.
, and
Young
,
P.
,
2010
, “
An Insight Into Linear Quarter Car Model Accuracy
,”
Veh. Syst. Dyn.
,
49
(
3
), pp.
463
480
.
43.
Segel
,
L.
,
1994
, “
Analysis and Prediction of the Dynamic Behavior of Motor Vehicles
,” Department of Mechanical Engineering and Applied Mechanics, The University of Michigan, Ann Arbor, MI, Lecture Notes for ME 558.
44.
Horowitz
,
R.
,
Li
,
Y.
,
Oldham
,
K.
,
Kon
,
S.
, and
Huang
,
X.
,
2007
, “
Dual-Stage Servo Systems and Vibration Compensation in Computer Hard Disk Drives
,”
Control Eng. Pract.
,
15
(
3
), pp.
291
305
.
45.
Shahsavari
,
B.
,
Conway
,
R.
,
Zhang
,
F.
, and
Horowitz
,
R.
,
2013
, “
H∞ Control Design for Systems With Periodic Irregular Sampling Using Optimal H2 Reference Controllers
,”
ASME
Paper No. ISPS2013-2951.
46.
Bagherieh
,
O.
,
Shahsavari
,
B.
, and
Horowitz
,
R.
,
2015
, “
Online Identification of System Uncertainties Using Coprime Factorizations With Application to Hard Disk Drives
,”
ASME
Paper No. DSCC2015-9873.
47.
Wang
,
X.
,
Gauterin
,
F.
, and
Saemann
,
E. U.
,
2004
, “
Tire Acoustic Optimization Using Point Damping Method
,”
Tire Sci. Technol.
,
32
(
2
), pp.
81
115
.
You do not currently have access to this content.