The main objective of this study is to propose a methodology for building a parametric linear model of flexible multibody systems (FMS) for control design. This new method uses a combined finite element (FE)–state-space approach based on component mode synthesis and a double-port approach. The proposed scheme offers the advantage of an automatic assembly of substructures, preserving the elastic dynamic behavior of the whole system. Substructures are connected following the double-port approach for considering the dynamic coupling among them, i.e., dynamic coupling is expressed through the transfer of accelerations and loads at the connection points. The proposed model allows the evaluation of arbitrary boundary conditions among substructures. In addition, parametric variations can be included in the model for integrated control/structure design purposes. The method can be applied to combinations of chainlike or/and starlike flexible systems, and it has been validated through its comparison with the assumed modes method (AMM) in the case of a rotatory spacecraft and with a nonlinear model of a two-link flexible arm.

References

References
1.
Wasfy
,
T.
, and
Noor
,
A.
,
2003
, “
Computational Strategies for Flexible Multibody Systems
,”
ASME J. Appl. Mech.
,
56
(
6
), pp.
553
613
.
2.
Schoen
,
M. P.
,
Hoover
,
R. C.
,
Chinvorarat
,
S.
, and
Schoen
,
G. M.
,
2009
, “
System Identification and Robust Controller Design Using Genetic Algorithms for Flexible Space Structures
,”
ASME J. Dyn. Syst. Meas. Control
,
131
(
3
), p.
031003
.
3.
Masoudi
,
R.
, and
Mahzoon
,
M.
,
2011
, “
Maneuvering and Vibrations Control of a Free-Floating Space Robot With Flexible Arms
,”
ASME J. Dyn. Syst. Meas. Control
,
133
(
5
), p.
051001
.
4.
Guy
,
N.
,
Alazard
,
D.
,
Cumer
,
C.
, and
Charbonnel
,
C.
,
2014
, “
Dynamic Modeling and Analysis of Spacecraft With Variable Tilt of Flexible Appendages
,”
ASME J. Dyn. Syst. Meas. Control
,
136
(
2
), p.
021020
.
5.
Chatlatanagulchai
,
W.
, and
Meckl
,
P. H.
,
2009
, “
Model-Independent Control of a Flexible-Joint Robot Manipulator
,”
ASME J. Dyn. Syst. Meas. Control
,
131
(
4
), p.
041003
.
6.
Boscariol
,
P.
,
Gasparetto
,
A.
, and
Zanotto
,
V.
,
2010
, “
Active Position and Vibration Control of a Flexible Links Mechanism Using Model-Based Predictive Control
,”
ASME J. Dyn. Syst. Meas. Control
,
132
(
1
), p.
014506
.
7.
Usoro
,
P.
,
Nadira
,
R.
, and
Mahil
,
S.
,
1986
, “
A Finite Element/Lagrange Approach to Modeling Lightweight Flexible Manipulators
,”
ASME J. Dyn. Syst. Meas. Control
,
108
(
3
), pp.
198
205
.
8.
Rong
,
B.
,
Rui
,
X.
, and
Wang
,
G.
,
2011
, “
Modified Finite Element—Transfer Matrix Method for Eigenvalue Problem of Flexible Structures
,”
ASME J. Appl. Mech.
,
78
(
2
), p.
021016
.
9.
Dokainish
,
M.
,
1972
, “
A New Approach for Plate Vibrations: Combination of Transfer Matrix and Finite Element Technique
,”
ASME J. Eng. Ind.
,
94
(
2
), pp.
526
530
.
10.
Rui
,
X.
,
Wang
,
G.
,
Lu
,
Y.
, and
Yun
,
L.
,
2008
, “
Transfer Matrix Method for Linear Multibody System
,”
Multibody Syst. Dyn.
,
19
(
3
), pp.
179
207
.
11.
Tan
,
T.
,
Yousuff
,
A.
,
Bahar
,
L.
, and
Konstantinidis
,
M.
,
1990
, “
A Modified Finite Element—Transfer Matrix for Control Design of Space Structures
,”
Comput. Struct.
,
36
(
1
), pp.
47
55
.
12.
Krauss
,
R.
, and
Book
,
W. J.
,
2010
, “
Transfer Matrix Modelling of Systems With Noncollocated Feedback
,”
ASME J. Dyn. Syst. Meas. Control
,
132
(
6
), p.
061301
.
13.
Hurty
,
W.
,
1965
, “
Dynamic Analysis of Structural Systems Using Component Modes
,”
AIAA J.
,
3
(
4
), pp.
678
685
.
14.
Hintz
,
R. M.
,
1975
, “
Analytical Methods in Component Modal Synthesis
,”
AIAA J.
,
13
(
8
), pp.
1007
1016
.
15.
MacNeal
,
R. H.
,
1971
, “
A Hybrid Method of Component Mode Synthesis
,”
Comput. Struct.
,
1
(
4
), pp.
581
601
.
16.
Craig
,
R. R.
, Jr.
,
2000
, “
A Brief Tutorial on Substructure Analysis and Testing
,”
International Modal Analysis Conference
(
IMAC
), San Antonio, TX, Feb. 7–10, Vol.
1
, pp.
899
908
.
17.
Ersal
,
T.
,
Fathy
,
H.
,
Rideout
,
D.
,
Louca
,
L.
, and
Stein
,
J.
,
2008
, “
A Review of Proper Modeling Techniques
,”
ASME J. Dyn. Syst. Meas. Control
,
130
(6), p. 061008.
18.
Young
,
K. D.
,
1990
, “
Distribute Finite-Element Modeling and Control Approach for Large Flexible Structures
,”
J. Guid.
,
13
(
4
), pp.
703
713
.
19.
Su
,
T.
,
Babuska
,
V.
, and
Craig
,
R.
,
1995
, “
Substructure-Based Controller Design Method for Flexible Structures
,”
J. Guid. Control Dyn.
,
18
(
5
), pp.
1053
1061
.
20.
Alazard
,
D.
,
Cumer
,
C.
, and
Tantawi
,
K.
,
2008
, “
Linear Dynamic Modeling of Spacecraft With Various Flexible Appendages and On-Board Angular Momentums
,” 7th
ESA
Guidance, Navigation and Control Conference
, pp. 11148–11153.
21.
Manceaux-Cumer
,
C.
, and
Chretien
,
J.
,
2001
, “
Minimal LFT Form of a Spacecraft Built Up From Two Bodies
,”
AIAA
Paper No. 2001-4350.
22.
Alazard
,
D.
,
Perez
,
J. A.
,
Loquen
,
T.
, and
Cumer
,
C.
,
2015
, “
Two-Input Two-Output Port Model for Mechanical Systems
,”
AIAA
Paper No. 2015-1778.
23.
Perez
,
J. A.
,
Alazard
,
D.
,
Loquen
,
T.
,
Cumer
,
C.
, and
Pittet
,
C.
,
2015
, “
Linear Dynamic Modeling of Spacecraft With Open-Chain Assembly of Flexible Bodies for ACS/Structure Co-Design
,”
Advances in Aerospace Guidance, Navigation and Control
,
Springer
, Cham, Switzerland, pp.
639
658
.
24.
Craig
,
R.
, and
Bampton
,
M.
,
1968
, “
Coupling of Substructures for Dynamic Analysis
,”
AIAA J.
,
6
(
7
), pp.
1313
1319
.
25.
Young
,
J.
,
2000
, “
Primer on Craig–Bampton CMS Procedure Method: An Introduction to Boundary Node Functions, Base Shake Analyses, Load Transformation Matrices, Modal Synthesis and Much More
,”
NASA
.
26.
Perez
,
J.
,
Pittet
,
C.
,
Alazard
,
D.
,
Loquen
,
T.
, and
Cumer
,
C.
,
2015
, “
A Flexible Appendage Model for Use in Integrated Control/Structure Spacecraft Design
,”
IFAC PapersOnline
,
48
(
9
), pp.
275
280
.
27.
Junkins
,
J. L.
, and
Kim
,
Y.
,
1993
,
Introduction to Dynamics and Control of Flexible Structures
,
AIAA
, Reston, VA.
28.
Luca
,
A. D.
, and
Siciliano
,
B.
,
1991
, “
Closed-Form Dynamic Model of Planar Multilink Lightweight Robots
,”
IEEE Trans. Syst., Man Cybern.
,
21
(
4
), pp.
826
839
.
29.
Mucino
,
V. H.
, and
Pavelic
,
V.
,
1981
, “
An Exact Condensation Procedure for Chain-Like Structures Using a Finite Element—Transfer Matrix Approach
,”
ASME J. Mech. Des.
,
103
(
2
), pp.
295
303
.
30.
Alazard
,
D.
,
Loquen
,
T.
,
de Plinval
,
H.
,
Cumer
,
C.
,
Toglia
,
C.
, and
Pavia
,
P.
,
2013
, “
Optimal Co-Design for Earth Observation Satellites With Flexible Appendages
,”
AIAA
Paper No. 2013-4640.
31.
Alazard
,
D.
,
Loquen
,
T.
,
de Plinval
,
H.
, and
Cumer
,
C.
,
2013
, “
Avionics/Control Co-Design for Large Flexible Space Structures
,”
AIAA
Paper No. 2013-4638.
32.
Murali
,
H.
,
Alazard
,
D.
,
Massotti
,
L.
,
Ankersen
,
F.
, and
Toglia
,
C.
,
2015
, “
Mechanical-Attitude Controller Co-Design of Large Flexible Space Structures
,”
EURO
Guidance, Navigation and Control Conference
, Toulouse, France, pp. 659–678.
33.
Belcastro
,
C. M.
,
Lim
,
K. B.
, and
Morelli
,
E. A.
,
1999
, “
Computer-Aided Uncertainty Modeling of Nonlinear Parameter-Dependent Systems. II. F-I6 Example
,” 1999
IEEE
International Symposium on Computer Aided Control System Design
, Kohala Coast, HI, pp.
16
23
.
34.
Balas
,
G.
,
Chiang
,
R.
,
Packard
,
A.
, and
Safonov
,
M.
,
2005
, “
Robust Control Toolbox
,”
For Use With MATLAB User's Guide
,
3
, MathWorks, Natick, MA.
35.
Ferreres
,
G.
,
1999
,
A Practical Approach to Robustness Analysis With Aeronautical Applications
,
Springer Science & Business Media
, Cham, Switzerland.
36.
Elgohary
,
T. A.
,
Turner
,
J. D.
, and
Junkins
,
J. L.
,
2015
, “
Analytic Transfer Functions for the Dynamics & Control of Flexible Rotating Spacecraft Performing Large Angle Maneuvers
,”
J. Astronaut. Sci.
,
62
(
2
), pp.
168
195
.
You do not currently have access to this content.