This paper deals with the problem of simultaneous compensation of the gain, phase, and phase-slope at an arbitrary frequency by using a fractional-order lead/lag compensator. The necessary and sufficient conditions for feasibility of the problem are derived. Also, the number of existing solutions (i.e., the number of distinct fractional-order lead/lag compensators satisfying the considered compensation requirements) is analytically found. Moreover, as a sample application, it is shown that the obtained results for the considered compensation problem are helpful in tuning fractional-order lead/lag compensators for simultaneously achieving desired phase margin, desired gain cross frequency, and flatness of the Bode phase plot of the loop transfer function at this frequency.

References

References
1.
Monje
,
C. A.
,
Chen
,
Y. Q.
,
Vinagre
,
B. M.
,
Xue
,
D.
, and
Feliu
,
V.
,
2010
,
Fractional-Order Systems and Controls—Fundamentals and Applications
,
Springer
,
Heidelberg, Germany
.
2.
Caponetto
,
R.
,
Dongola
,
G.
,
Fortuna
,
L.
, and
Petras
,
I.
,
2010
,
Fractional Order Systems: Modeling and Control Applications
,
World Scientific
,
Singapore
.
3.
Luo
,
Y.
, and
Chen
,
Y. Q.
,
2012
,
Fractional Order Motion Controls
,
Wiley
,
New York
.
4.
Efe
,
M. Ö.
,
2011
, “
Fractional Order Systems in Industrial Automation—A Survey
,”
IEEE Trans. Ind. Inf.
,
7
(
4
), pp.
582
591
.
5.
Tavazoei
,
M. S.
,
2012
, “
From Traditional to Fractional PI Control: A Key for Generalization
,”
IEEE Ind. Electron. Mag.
,
6
(
3
), pp.
41
51
.
6.
Tavazoei
,
M. S.
,
2014
, “
Time Response Analysis of Fractional-Order Control Systems: A Survey on Recent Results
,”
Fractional Calculus Appl. Anal.
,
17
(
2
), pp.
440
461
.
7.
Wang
,
D. J.
, and
Gao
,
X. L.
,
2012
, “
H∞ Design With Fractional-Order PDμ Controllers
,”
Automatica
,
48
(
5
), pp.
974
977
.
8.
Badri
,
V.
, and
Tavazoei
,
M. S.
,
2013
, “
On Tuning Fractional Order [Proportional–Derivative] Controllers for a Class of Fractional Order Systems
,”
Automatica
,
49
(
7
), pp.
2297
2301
.
9.
Djennoune
,
S.
, and
Bettayeb
,
M.
,
2013
, “
Optimal Synergetic Control for Fractional-Order Systems
,”
Automatica
,
49
(
7
), pp.
2243
2249
.
10.
Badri
,
V.
, and
Tavazoei
,
M. S.
,
2013
, “
On Tuning FO[PI] Controllers for FOPDT Processes
,”
Electron. Lett.
,
49
(
21
), pp.
1326
1328
.
11.
Padula
,
F.
, and
Visioli
,
A.
,
2014
,
Advances in Robust Fractional Control
,
Springer
,
Heidelberg, Germany
.
12.
Podlubny
,
I.
,
1999
, “
Fractional-Order Systems and PIλDμ-Controllers
,”
IEEE Trans. Autom. Control
,
44
(
1
), pp.
208
214
.
13.
Tavazoei
,
M. S.
, and
Tavakoli-Kakhki
,
M.
,
2014
, “
Compensation by Fractional-Order Phase-Lead/Lag Compensators
,”
IET Control Theory Appl.
,
8
(
5
), pp.
319
329
.
14.
Bonnet
,
C.
, and
Partington
,
J. R.
,
2000
, “
Coprime Factorizations and Stability of Fractional Differential Systems
,”
Syst. Control Lett.
,
41
(
3
), pp.
167
174
.
15.
Anton
,
H.
,
1999
,
Calculus: A New Horizon
,
6th ed.
,
Wiley
,
New York
.
16.
Ogata
,
K.
,
2002
,
Modern Control Engineering
,
4th ed.
,
Prentice-Hall
,
Upper Saddle River, NJ
.
17.
Chen
,
Y. Q.
, and
Kevin
,
L. M.
,
2005
, “
Relay Feedback Tuning of Robust PID Controllers With Iso-Damping
,”
Trans. Syst. Man Cybern., Part B
,
35
(
1
), pp.
23
31
.
18.
Luo
,
Y.
, and
Chen
,
Y. Q.
,
2009
, “
Fractional Order [Proportional Derivative] Controller for a Class of Fractional Order Systems
,”
Automatica
,
45
(
10
), pp.
2446
2450
.
19.
Luo
,
Y.
, and
Chen
,
Y. Q.
,
2012
, “
Stabilizing and Robust Fractional Order PI Controller Synthesis for First Order Plus Time Delay Systems
,”
Automatica
,
48
(
9
), pp.
2159
2167
.
20.
Wang
,
Q. G.
,
Ye
,
Z.
, and
Hang
,
C. C.
,
2006
, “
Tuning of Phase-Lead Compensators for Exact Gain and Phase Margins
,”
Automatica
,
42
(
2
), pp.
349
352
.
21.
Zhang
,
R.
,
Xue
,
A.
, and
Gao
,
F.
,
2014
, “
Temperature Control of Industrial Coke Furnace Using Novel State Space Model Predictive Control
,”
IEEE Trans. Ind. Inf.
,
10
(
4
), pp.
2084
2092
.
You do not currently have access to this content.