A simulation study to control the motion of a human arm using muscle excitations as inputs is presented to validate a recently developed adaptive output feedback controller for a class of unknown multi-input multi-output (MIMO) systems. The main contribution of this paper is to extend the results of Nguyen and Leonessa (2014, “Adaptive Predictor-Based Output Feedback Control for a Class of Unknown MIMO Linear Systems,” ASME Paper No. DSCC2014-6214; 2014, “Adaptive Predictor-Based Output Feedback Control for a Class of Unknown MIMO Linear Systems: Experimental Results,” ASME Paper No. DSCC2014-6217; and 2015, “Adaptive Predictor-Based Output Feedback Control for a Class of Unknown MIMO Systems: Experimental Results,” American Control Conference, pp. 3515–3521) by combining a recently developed fast adaptation technique and a new controller structure to derive a simple approach for a class of high relative degree uncertain systems. Specifically, the presented control approach relies on three components: a predictor, a reference model, and a controller. The predictor is designed to predict the systems output for any admissible control input. A full state feedback control law is then derived to control the predictor output to approach the reference system. The control law avoids the recursive step-by-step design of backstepping and remains simple regardless of the system relative degree. Ultimately, the control objective of driving the actual system output to track the desired trajectory is achieved by showing that the system output, the predictor output, and the reference system trajectories all converge to each other. Thelen and Millard musculotendon models (Thelen, D. G., 2003, “Adjustment of Muscle Mechanics Model Parameters to Simulate Dynamic Contractions in Older Adults,” ASME J. Biomech. Eng., 125(1), pp. 70–77; Millard, M, Uchida, T, Seth, A, and Delp, Scott L., 2013, “Flexing Computational Muscle: Modeling and Simulation of Musculotendon Dynamics,” ASME J. Biomech. Eng., 135(2), p. 021005) are used to validate the proposed controller fast tracking performance and robustness.

References

References
1.
Gallego
,
J. A.
,
Rocon
,
E.
,
Ibáñez
,
J.
,
Dideriksen
,
J. L.
,
Koutsou
,
A. D.
,
Paradiso
,
R.
,
Popovic
,
M. B.
,
Belda-Lois
,
J. M.
,
Gianfelici
,
F.
,
Farina
,
D.
,
Popovic
,
D. B.
,
Manto
,
M.
,
D'Alessio
,
T.
, and
Pons
,
J. L.
,
2011
, “
A Soft Wearable Robot for Tremor Assessment and Suppression
,”
IEEE International Conference on Robotics and Automation
(ICRA), IEEE, pp.
2249
2254
.
2.
Widjaja
,
F.
,
Shee
,
C. Y.
,
Zhang
,
D.
,
Ang
,
W. T.
,
Poignet
,
P.
,
Bo
,
A.
, and
Guiraud
,
D.
,
2008
, “
Current Progress on Pathological Tremor Modeling and Active Compensation Using Functional Electrical Stimulation
,”
The 6th Conference of the International Society for Gerontechnology
, pp.
001
006
.
3.
Shariati
,
N.
,
Maleki
,
A.
, and
Fallah
,
A.
,
2011
, “
Genetic-PID Control of Elbow Joint Angle for Functional Electrical Stimulation: A Simulation Study
,”
2nd International Conference on Control, Instrumentation and Automation (ICCIA)
, pp.
150
155
.
4.
Krstic
,
M.
,
Kanellakopoulos
,
I.
, and
Kokotovic
,
P. V.
,
1995
,
Nonlinear and Adaptive Control Design
,
Wiley
,
New York
.
5.
Chenliang
,
W.
, and
Yan
,
L.
,
2010
, “
Adaptive Dynamic Surface Control for Linear Multivariable Systems
,”
Automatica
,
46
(
10
), pp.
1703
1711
.
6.
Song
,
M.
, and
Lin
,
Y.
,
2013
, “
A Robust Output-Feedback Adaptive Dynamic Surface Control for Linear Systems With Input Disturbance
,”
J. Control Theory Appl.
,
11
(
2
), pp.
261
267
.
7.
Yang
,
Z.-J.
,
Nagai
,
T.
,
Kanae
,
S.
, and
Wada
,
K.
,
2007
, “
Dynamic Surface Control Approach to Adaptive Robust Control of Nonlinear Systems in Semi-Strict Feedback Form
,”
Int. J. Syst. Sci.
,
38
(
9
), pp.
709
724
.
8.
Yip
,
P. P.
, and
Hedrick
,
J. K.
,
1998
, “
Adaptive Dynamic Surface Control: A Simplified Algorithm for Adaptive Backstepping Control of Nonlinear Systems
,”
Int. J. Control
,
71
(
5
), pp.
959
979
.
9.
Dong
,
W.
,
Farrell
,
J. A.
,
Polycarpou
,
M. M.
,
Djapic
,
V.
, and
Sharma
,
M.
,
2012
, “
Command Filtered Adaptive Backstepping
,”
IEEE Trans. Control Syst. Technol.
,
20
(
3
), pp.
566
580
.
10.
Farrell
,
J. A.
,
Polycarpou
,
M.
,
Sharma
,
M.
, and
Wenjie
,
D.
,
2009
, “
Command Filtered Backstepping
,”
IEEE Trans. Autom. Control
,
54
(
6
), pp.
1391
1395
.
11.
Stepanyan
,
V.
, and
Krishnakumar
,
K.
,
2012
, “
Certainty Equivalence M-MRAC for Systems With Unmatched Uncertainties
51st IEEE Conference on Decision and Control
, pp.
4152
4157
.
12.
Stepanyan
,
V.
,
Krishnakumar
,
K.
, and
Nhan
,
N.
,
2009
, “
Transient Performance and Asymptotic Tracking With Filtering Robust Adaptive Control
,”
IEEE Aerospace Conference
, pp.
1
9
.
13.
Khan
,
Q.
, and
Bhatti
,
A. I.
,
2014
, “
Robust Dynamic Integral Sliding Mode for MIMO Nonlinear Systems Operating Under Matched and Unmatched Uncertainties
,”
J. Control Eng. Appl. Inf.
,
16
(
4
), pp.
107
117
.
14.
Hsu
,
L.
,
1990
, “
Variable Structure Model-Reference Adaptive Control (VS-MRAC) Using Only Input and Output Measurements: The General Case
,”
IEEE Trans. Autom Control
,
35
(
11
), pp.
1238
1243
.
15.
Nguyen
,
C. H.
, and
Leonessa
,
A.
,
2014
, “
Control Motion of a Human Arm: A Simulation Study
,”
International Conference of Control, Dynamic Systems, and Robotics
, Ottawa, Ontario, Canada, May 15–16, p.
98
.
16.
Stepanyan
,
V.
, and
Krishnakumar
,
K.
,
2012
, “
Indirect M-MRAC for Systems With Time Varying Parameters and Bounded Disturbances
,”
2012 IEEE International Symposium on Intelligent Control (ISIC)
, Yulin, Taiwan, Aug. 14–16, pp.
1232
1237
.
17.
Stepanyan
,
V.
, and
Krishnakumar
,
K.
,
2012
, “
Modified Reference Model MRAC (M-MRAC): An Application to a Generic Transport Model
,”
Advances in Intelligent and Autonomous Aerospace Systems
(AIAA Series), Vol.
241
,
J.
Valasek
, ed.,
Dover Publications
,
New York
.
18.
Reinbolt
,
J. A.
,
Seth
,
A.
,
Hammer
,
S.
, and
Habib
,
A.
,
2008
,
Arm26 Models
, simtk-confluence.stanford.edu:8080/display/OpenSim/Musculoskeletal+Models
19.
Ioannou
,
P. A.
, and
Sun
,
J.
,
2012
,
Robust Adaptive Control
,
Courier Corporation
,
Chelmsford, MA
.
20.
Schafer
,
R. D.
,
1966
,
An Introduction to Nonassociative Algebras
, Vol.
22
,
Courier Corporation
,
Chelmsford, MA
.
21.
Nguyen
,
C. H.
, and
Leonessa
,
A.
,
2014
, “
Adaptive Predictor-Based Output Feedback Control for a Class of Unknown MIMO Linear Systems
,”
ASME
Paper No. DSCC2014-6214.
22.
Khalil
,
H. K.
,
2002
,
Nonlinear Systems
, Vol.
3
,
Prentice Hall
,
Upper Saddle River, NJ
.
23.
Leonessa
,
A.
,
Haddad
,
W. M.
,
Hayakawa
,
T.
, and
Morel
,
Y.
,
2009
, “
Adaptive Control for Nonlinear Uncertain Systems With Actuator Amplitude and Rate Saturation Constraints
,”
Int. J. Adaptive Control Signal Process.
,
23
(
1
), pp.
73
96
.
24.
John
,
C.
,
2011
,
Complete Description of the Thelen Muscle Model, Last Accessed on Oct. 28
, simtk-confluence.stanford.edu:8080/display/OpenSim24/Muscle+Model+Theory+and+Publications
25.
Jennifer Hicks
,
J. D.
,
2014
, “
Scripting With MATLAB
,” simtk-confluence.stanford.edu:8080/display/OpenSim/Scripting+with+Matlab
26.
Mansouri
,
M.
, and
Reinbolt
,
J. A.
,
2012
, “
A Platform for Dynamic Simulation and Control of Movement Based on OpenSim and MATLAB
,”
J. Biomech.
,
45
(
8
), pp.
1517
1521
.
27.
Mansouri
,
M.
,
Clark
,
A. E.
,
Seth
,
A.
, and
Reinbolt
,
J. A.
,
2016
, “
Rectus Femoris Transfer Surgery Affects Balance Recovery in Children With Cerebral Palsy: A Computer Simulation Study
,”
Gait Posture
,
43
, pp.
24
30
.
28.
Kitamura
,
T.
,
Sakaino
,
S.
, and
Tsuji
,
T.
,
2015
, “
Bilateral Control Using Functional Electrical Stimulation
,” IECON
41st Annual Conference of the IEEE, Industrial Electronics Society
, Yokohama, Japan, Nov. 9–12, pp.
002336
002341
.
29.
Alibeji
,
N.
,
Kirsch
,
N.
, and
Sharma
,
N.
,
2015
, “
Dynamic Surface Control of Neuromuscular Electrical Stimulation of a Musculoskeletal System With Activation Dynamics and an Input Delay
,”
American Control Conference
(ACC), Chicago, IL, July 1–3, pp.
631
636
.
30.
Jezernik
,
S.
,
Wassink
,
R. G.
, and
Keller
,
T.
,
2004
, “
Sliding Mode Closed-Loop Control of FES Controlling the Shank Movement
,”
IEEE Trans. Biomed. Eng.
,
51
(
2
), pp.
263
272
.
31.
Schearer
,
E. M.
,
Liao
,
Y.-W.
,
Perreault
,
E. J.
,
Tresch
,
M. C.
,
Memberg
,
W. D.
,
Kirsch
,
R. F.
, and
Lynch
,
K. M.
,
2014
, “
Multi-Muscle FES Force Control of the Human Arm for Arbitrary Goals
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
22
(
3
), pp.
654
663
.
32.
Millard
,
M.
,
Uchida
,
T.
,
Seth
,
A.
, and
Delp
,
S. L.
,
2013
, “
Flexing Computational Muscle: Modeling and Simulation of Musculotendon Dynamics
,”
ASME J. Biomech. Eng.
,
135
(
2
), p.
021005
.
33.
Thelen
,
D. G.
,
2003
, “
Adjustment of Muscle Mechanics Model Parameters to Simulate Dynamic Contractions in Older Adults
,”
ASME J. Biomech. Eng.
,
125
(
1
), pp.
70
77
.
34.
Liao
,
Y.-W.
,
Schearer
,
E. M.
,
Hu
,
X.
,
Perreault
,
E. J.
,
Tresch
,
M. C.
, and
Lynch
,
K. M.
,
2013
, “
Modeling Open-Loop Stability of a Human Arm Driven by a Functional Electrical Stimulation Neuroprosthesis
,”
35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society
(EMBC), Osaka, Japan, July 3–7, pp.
3598
3601
.
35.
Liao
,
Y.-W.
,
Schearer
,
E. M.
,
Perreault
,
E. J.
,
Tresch
,
M. C.
, and
Lynch
,
K. M.
,
2014
, “
Multi-Muscle FES Control of the Human Arm for Interaction Tasks Stabilizing With Muscle Co-Contraction and Postural Adjustment: A Simulation Study
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS 2014), Chicago, IL, Sept. 14–18, pp.
2134
2139
.
You do not currently have access to this content.