Automated early detection of myocardial infarction (MI) has been long studied for the purpose of saving human lives. In this paper, we propose a rule-based expert system to analyze a 12-lead electrocardiogram (ECG) for various types of MI. This system is developed by mapping clinical definitions of different types of MI and their differential diagnosis into corresponding algorithmic rule sets. Essential preprocessing steps such as baseline correction, removal of ectopic beats, and median filtering are carried out on recorded ECG. Techniques such as multistage polynomial correction and QRS subtraction are exploited to achieve reliable preprocessing. The processed ECG is then delineated using a time-domain differential-based search algorithm recently proposed by the team to obtain the relevant features and measures. These features and measures are further utilized by an if-then rule set to classify the ECG into various groups. The performance of the system when validated on sample MI database exhibited a sensitivity of 95.7% and specificity of 94.6%. Unlike many previous works, this reliable performance is achieved without the use of abstract classifiers or the need of prior training. Being based on medical definitions, the system is also easily comprehensible, modifiable, and compatible with manual diagnosis.

References

References
1.
Mathers
,
C. D.
,
Boerma
,
T.
, and
Ma Fat
,
D.
,
2009
, “
Global and Regional Causes of Death
,”
Br. Med. Bull.
,
92
(
1
), pp.
7
32
.
2.
Kannel
,
W. B.
,
1986
, “
Silent Myocardial Ischemia and Infarction: Insights From the Framingham Study
,”
Cardiol. Clin.
,
4
(
4
), pp.
583
591
.
3.
Haraldsson
,
H.
,
Edenbrandt
,
L.
, and
Ohlsson
,
M.
,
2004
, “
Detecting Acute Myocardial Infarction in the 12-Lead ECG Using Hermite Expansions and Neural Networks
,”
Artif. Intell. Med.
,
32
(
2
), pp.
127
136
.
4.
Mitra
,
S.
,
Mitra
,
M.
, and
Chaudhuri
,
B. B.
,
2006
, “
A Rough-Set-Based Inference Engine for ECG Classification
,”
IEEE Trans. Instrum. Meas.
,
55
(
6
), pp.
2198
2206
.
5.
Sun
,
L.
,
Lu
,
Y.
,
Yang
,
K.
, and
Li
,
S.
,
2012
, “
ECG Analysis Using Multiple Instance Learning for Myocardial Infarction Detection
,”
IEEE Trans. Biomed. Eng.
,
59
(
12
), pp.
3348
3356
.
6.
Maharaj
,
E. A.
, and
Alonso
,
A. M.
,
2014
, “
Discriminant Analysis of Multivariate Time Series: Application to Diagnosis Based on ECG Signals
,”
Comput. Stat. Data Anal.
,
70
, pp.
67
87
.
7.
Thygesen
,
K.
,
Alpert
,
J. S.
,
Jaffe
,
A. S.
,
Simoons
,
M. L.
,
Chatiman
,
B. R.
, and
White
,
H. D.
,
2012
, “
Third Universal Definition of Myocardial Infarction
,”
Circulation
,
126
(
16
), pp.
2020
2035
.
8.
Dubin
,
D.
,
2000
,
Rapid Interpretation of EKG's: An Interactive Course
,
Cover Publishing Company
,
Tampa, FL
.
9.
Wang
,
K.
,
Asinger
,
R. W.
, and
Marriott
,
H. J.
,
2003
, “
ST-Segment Elevation in Conditions Other Than Acute Myocardial Infarction
,”
N. Engl. J. Med.
,
349
(
22
), pp.
2128
2135
.
10.
Derval
,
N.
,
Shah
,
A.
, and
Jaïs
,
P.
,
2011
, “
Definition of Early Repolarization: A Tug of War
,”
Circulation
,
124
(
20
), pp.
2185
2186
.
11.
Sovari
,
A. A.
,
Assadi
,
R.
,
Lakshminarayanan
,
B.
, and
Kocheril
,
A. G.
,
2007
, “
Hyperacute T Wave: The Early Sign of Myocardial Infarction
,”
Am. J. Emerg. Med.
,
25
(
7
), pp.
859-e1
859-e7
.
12.
Wienbergen
,
H.
,
Gitt
,
A. K.
,
Schiele
,
R.
,
Juenger
,
C.
,
Heer
,
T.
,
Vogel
,
C.
,
Gottwik
,
M.
, and
Senges
,
J.
,
2004
, “
Different Treatments and Outcomes of Consecutive Patients With Non-ST-Elevation Myocardial Infarction Depending on Initial Electrocardiographic Changes (Results of the Acute Coronary Syndromes [ACOS] Registry)
,”
Am. J. Cardiol.
,
93
(
12
), pp.
1543
1546
.
13.
Tafreshi
,
R.
,
Jaleel
,
A.
,
Lim
,
J.
, and
Tafreshi
,
L.
,
2014
, “
Automated Analysis of ECG Waveforms With Atypical QRS Complex Morphologies
,”
Biomed. Signal Process. Control
,
10
, pp.
41
49
.
14.
Pandit
,
S. V.
,
1996
, “
ECG Baseline Drift Removal Through STFT
,”
18th Annual International Conference of the
IEEE
in Engineering in Medicine and Biology Society, Amsterdam, The Netherlands, Oct. 31–Nov. 3, Vol.
4
, pp.
1405
1406
.
15.
Chouhan
,
V. S.
, and
Mehta
,
S. S.
,
2007
, “
Total Removal of Baseline Drift From ECG Signal
,”
International Conference on Computing: Theory and Applications
(
ICCTA'07
), Kolkata, India, Mar. 5–7, pp.
512
515
.
16.
Plesnik
,
E.
,
Malgina
,
O.
,
Tasic
,
J. F.
, and
Zajc
,
M.
,
2012
, “
ECG Baseline Drift Correction Through Phase Space for Simple R-Point Detection
,”
25th International Symposium on Computer-Based Medical Systems
(
CBMS
), Rome, Italy, June 20–22.
17.
Manriquez
,
A. I.
, and
Zhang
,
Q.
,
2007
, “
An Algorithm for QRS Onset and Offset Detection in Single Lead Electrocardiogram Records
,”
29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society
,
EMBS
, Lyon, France, Aug. 22–26, pp.
541
544
.
18.
Jaleel
,
A.
,
Tafreshi
,
R.
,
Mohsin
,
N.
, and
Tafreshi
,
L.
,
2012
, “
A Comprehensive Algorithm for the Analysis of ECG Waveforms
,”
ASME
Paper No. IMECE2012-87553.
19.
Shah
,
D.
,
Yamane
,
T.
,
Choi
,
K. J.
, and
Haissaguerre
,
M.
,
2004
, “
QRS Subtraction and the ECG Analysis of Atrial Ectopics
,”
Ann. Noninvasive Electrocardiol.
,
9
(
4
), pp.
389
398
.
20.
Salinet
,
J. L.
, Jr.
,
Madeiro
,
J. P. V.
,
Cortez
,
P. C.
,
Stafford
,
P. J.
,
Ng
,
G. A.
, and
Schlindwein
,
F. S.
,
2013
, “
Analysis of QRS-T Subtraction in Unipolar Atrial Fibrillation Electrograms
,”
Med. Biol. Eng. Comput.
,
51
(
12
), pp.
1381
1391
.
21.
Afonso
,
V. X.
,
Tompkins
,
W. J.
,
Nguyen
,
T. Q.
,
Michler
,
K.
, and
Luo
,
S.
,
1996
, “
Comparing Stress ECG Enhancement Algorithms
,”
IEEE Eng. Med. Biol. Mag.
,
15
(
3
), pp.
37
44
.
22.
Brownfield
,
J.
, and
Herbert
,
M.
,
2008
, “
ECG Criteria for Fibrinolysis: What's Up With the J Point?
West. J. Emerg. Med.
,
9
(
1
), pp.
40
42
.
23.
Sgarbossa
,
E. B.
,
Pinski
,
S. L.
,
Barbagelata
,
A.
,
Underwood
,
D. A.
,
Gates
,
K. B.
,
Topol
,
E. J.
,
Califf
,
R. M.
, and
Wagner
,
G. S.
,
1996
, “
Electrocardiographic Diagnosis of Evolving Acute Myocardial Infarction in the Presence of Left Bundle-Branch Block
,”
N. Engl. J. Med.
,
334
(
8
), pp.
481
487
.
24.
Bousseljot
,
R.
,
Kreiseler
,
D.
, and
Schnabel
,
A.
,
1995
, “
Nutzung der EKG-Signaldatenbank CARDIODAT der PTB über das Internet
,”
Biomed. Tech.
,
40
(
s1
), pp.
317
318
.
25.
Banerjee
,
S.
, and
Mitra
,
M.
,
2010
, “
ECG Feature Extraction and Classification of Anteroseptal Myocardial Infarction and Normal Subjects Using Discrete Wavelet Transform
,”
International Conference on Systems in Medicine and Biology
(
ICSMB
), Kharagpur, India, Dec. 16–18, pp.
55
60
.
You do not currently have access to this content.