Integrating an exoskeleton as the external apparatus for a brain–machine interface (BMI) has the advantage of providing multiple contact points to determine body segment postures and allowing control to and feedback from each joint. When using macaques as subjects to study the neural control of movement, an upper limb exoskeleton design with unlikely singularity is required to guarantee safe and accurate tracking of joint angles over all possible range of motion (ROM). Additionally, the compactness of the design is of more importance considering macaques have significantly smaller body dimensions than humans. This paper proposes a six degree-of-freedom (DOF) passive upper limb exoskeleton with 4DOFs at the shoulder complex. System kinematic analysis is investigated in terms of its singularity and manipulability. A real-time data acquisition system is set up, and system kinematic calibration is conducted. The effectiveness of the proposed exoskeleton system is finally demonstrated by a pilot animal test in the scenario of a reach and grasp task.

References

References
1.
Carmena
,
J. M.
,
2013
, “
Advances in Neuroprosthetic Learning and Control
,”
PLoS Biol.
,
11
(
5
), p.
e1001561
.
2.
Velliste
,
M.
,
Perel
,
S.
,
Spalding
,
M. C.
,
Whitford
,
A. S.
, and
Schwartz
,
A. B.
,
2008
, “
Cortical Control of a Prosthetic Arm for Self-Feeding
,”
Nature
,
453
(
7198
), pp.
1098
1101
.
3.
Hochberg
,
L. R.
,
Bacher
,
D.
,
Jarosiewicz
,
B.
,
Masse
,
N. Y.
,
Simeral
,
J. D.
,
Vogel
,
J.
,
Haddadin
,
S.
,
Liu
,
J.
,
Cash
,
S. S.
,
van der Smagt
,
P.
, and
Donoghue
,
J. P.
,
2012
, “
Reach and Grasp by People With Tetraplegia Using a Neurally Controlled Robotic Arm
,”
Nature
,
485
(
7398
), pp.
372
375
.
4.
Nef
,
T.
, and
Riener
,
R.
,
2008
, “
Shoulder Actuation Mechanisms for Arm Rehabilitation Exoskeletons
,” 2nd
IEEE RAS and EMBS
International Conference on Biomedical Robotics and Biomechatronics
, Scottsdale, AZ, Oct. 19–22, pp.
862
868
.
5.
Scott
,
S. H.
,
1999
, “
Apparatus for Measuring and Perturbing Shoulder and Elbow Joint Positions and Torques During Reaching
,”
J. Neurosci. Methods
,
89
(
2
), pp.
119
127
.
6.
Gopura
,
R. A. R. C.
, and
Kiguchi
,
K.
,
2009
, “
Mechanical Designs of Active Upper-Limb Exoskeleton Robots: State-of-the-Art and Design Difficulties
,”
IEEE International Conference on Rehabilitation Robotics
(
ICORR
), Kyoto, Japan, June 23–26, pp.
178
187
.
7.
Medical Multimedia Group
,
2008
, “
Orthopedic Information
,”
Medical Multimedia Group, LLC
, Missoula, MT.
8.
Wu
,
G.
,
van der Helm
,
F. C. T.
,
Veeger
,
H. E. J.
,
Makhsous
,
M.
,
van Roy
,
P.
,
Anglin
,
C.
,
Nagels
,
J.
,
Karduna
,
A. R.
,
McQuade
,
K.
,
Wang
,
X.
,
Werner
,
F. W.
, and
Buchholz
,
B.
,
2005
, “
ISB Recommendation on Definitions of Joint Coordinate Systems of Various Joints for the Reporting of Human Joint Motion—Part II: Shoulder, Elbow, Wrist and Hand
,”
J. Biomech.
,
38
(
5
), pp.
981
992
.
9.
Ball
,
S.
,
Brown
,
I.
, and
Scott
,
S.
,
2007
, “
MEDARM: A Rehabilitation Robot With 5DOF at the Shoulder Complex
,”
IEEE/ASME International Conference on Advanced Intelligent Mechatronics
(
AIM
), Zurich, Switzerland, Sept. 4–7.
10.
Ergin
,
M. A.
, and
Patoglu
,
V.
,
2012
, “
ASSISTON-SE: A Self-Aligning Shoulder-Elbow Exoskeleton
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Saint Paul, MN, May 14–18, pp.
2479
2485
.
11.
Romilly
,
D. P.
,
Anglin
,
C.
,
Gosine
,
R. G.
,
Hershler
,
C.
, and
Raschke
,
S. U.
,
1994
, “
A Functional Task Analysis and Motion Simulation for the Development of a Powered Upper-Limb Orthosis
,”
IEEE Trans. Rehabil. Eng.
,
2
(
3
), pp.
119
129
.
12.
Perry
,
J.
,
Rosen
,
J.
, and
Burns
,
S.
,
2007
, “
Upper-Limb Powered Exoskeleton Design
,”
IEEE/ASME Trans. Mechatronics
,
12
(
4
), pp.
408
417
.
13.
Letier
,
P.
,
Avraam
,
M.
,
Veillerette
,
S.
,
Horodinca
,
M.
,
Bartolomei
,
M. D.
,
Schiele
,
A.
, and
Preumont
,
A.
,
2008
, “
SAM: A 7-DOF Portable Arm Exoskeleton With Local Joint Control
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
), Nice, France, Sep. 22–26, pp.
3501
3506
.
14.
Cheng
,
E. J.
, and
Scott
,
S. H.
,
2000
, “
Morphometry of Macaca mulatta Forelimb. I. Shoulder and Elbow Muscles and Segment Inertial Parameters
,”
J. Morphol.
,
245
(
3
), pp.
206
224
.
15.
Huston
,
R.
,
2009
,
Principles of Biomechanics
,
Taylor & Francis CRC Press
,
Boca Raton, FL
.
16.
Schell
,
K.
,
Bradley
,
E.
,
Bucher
,
L.
,
Seckel
,
M.
,
Lyons
,
D.
,
Wakai
,
S.
,
Bartell
,
D.
,
Carson
,
E.
,
Chichester
,
M.
,
Foraker
,
T.
, and
Simpson
,
K.
,
2006
, “
Clinical Comparison of Automatic, Noninvasive Measurements of Blood Pressure in the Forearm and Upper Arm
,”
Am. J. Crit. Care
,
15
(
2
), pp.
196
205
.
17.
Cott
,
H. P. V.
, and
Kinkade
,
R. G.
,
1972
,
Human Engineering Guide to Equipment Design
, Revised ed.,
McGraw-Hill
,
Washington, DC
.
18.
Christel
,
M. I.
, and
Billard
,
A.
,
2002
, “
Comparison Between Macaques' and Humans' Kinematics of Prehension: The Role of Morphological Differences and Control Mechanisms
,”
Behav. Brain Res.
,
131
(
1–2
), pp.
169
184
.
19.
Chan
,
S. S.
, and
Moran
,
D. W.
,
2006
, “
Computational Model of a Primate Arm: From Hand Position to Joint Angles, Joint Torques and Muscle Forces
,”
J. Neural Eng.
,
3
(
4
), pp.
327
337
.
20.
Yang
,
J.
,
Abdel-Malek
,
K.
, and
Nebel
,
K.
,
2005
, “
Reach Envelope of a 9-Degree-of-Freedom Model of the Upper Extremity
,”
Int. J. Rob. Autom.
,
20
(
4
), pp.
240
259
.
21.
Yoshikawa
,
T.
,
1985
, “
Manipulability of Robotic Mechanisms
,”
Int. J. Rob. Res.
,
4
(
2
), pp.
3
9
.
22.
Kim
,
J.-O.
, and
Khosla
,
P. K.
,
1991
, “
Dexterity Measures for Design and Control of Manipulators
,”
IEEE/RSJ International Workshop on Intelligent Robots and Systems
(
IROS
), Osaka, Japan, Nov. 3–5, Vol.
2
, pp.
758
763
.
23.
Martinez
,
F.
,
Retolaza
,
I.
,
Pujana-Arrese
,
A.
,
Cenitagoya
,
A.
,
Basurko
,
J.
, and
Landaluze
,
J.
,
2008
, “
Design of a Five Actuated DoF Upper Limb Exoskeleton Oriented to Workplace Help
,” 2nd
IEEE RAS and EMBS
International Conference on Biomedical Robotics and Biomechatronics (BioRob)
, Scottsdale, AZ, Oct. 19–22, pp.
169
174
.
24.
Siciliano
,
B.
,
Sciavicco
,
L.
,
Villani
,
L.
, and
Oriolo
,
G.
,
2009
,
Robotics: Modelling, Planning and Control
,
2nd ed.
,
Springer
,
London
.
25.
PhaseSpace
,
2012
, “
The IMPULSE X2 Motion Capture System Catalog
,”
PhaseSpace, Inc.
, San Leandro, CA.
26.
MathWorks
,
2012
, “
Optimization Toolbox
,”
MathWorks, Inc.
, Natick, MA.
27.
Gilja
,
V.
,
Nuyujukian
,
P.
,
Chestek
,
C. A.
,
Cunningham
,
J. P.
,
Yu
,
B. M.
,
Fan
,
J. M.
,
Churchland
,
M. M.
,
Kaufman
,
M. T.
,
Kao
,
J. C.
,
Ryu
,
S. I.
, and
Shenoy
,
K. V.
,
2012
, “
A High-Performance Neural Prosthesis Enabled by Control Algorithm Design
,”
Nat. Neurosci.
,
15
(
12
), pp.
1752
1757
.
28.
Shanechi
,
M. M.
,
Orsborn
,
A. L.
, and
Carmena
,
J. M.
,
2016
, “
Robust Brain-Machine Interface Design Using Optimal Feedback Control Modeling and Adaptive Point Process Filtering
,”
PLoS Comput. Biol.
,
12
(
4
), p.
e1004730
.
You do not currently have access to this content.