Muscle fatigue is a neuromuscular condition experienced during daily activities. This phenomenon is generally characterized using surface electromyography (sEMG) signals and has gained a lot of interest in the fields of clinical rehabilitation, prosthetics control, and sports medicine. sEMG signals are complex, nonstationary and also exhibit self-similarity fractal characteristics. In this work, an attempt has been made to differentiate sEMG signals in nonfatigue and fatigue conditions during dynamic contraction using multifractal analysis. sEMG signals are recorded from biceps brachii muscles of 42 healthy adult volunteers while performing curl exercise. The signals are preprocessed and segmented into nonfatigue and fatigue conditions using the first and last curls, respectively. The multifractal detrended moving average algorithm (MFDMA) is applied to both segments, and multifractal singularity spectrum (SSM) function is derived. Five conventional features are extracted from the singularity spectrum. Twenty-five new features are proposed for analyzing muscle fatigue from the multifractal spectrum. These proposed features are adopted from analysis of sEMG signals and muscle fatigue studies performed in time and frequency domain. These proposed 25 feature sets are compared with conventional five features using feature selection methods such as Wilcoxon rank sum, information gain (IG) and genetic algorithm (GA) techniques. Two classification algorithms, namely, k-nearest neighbor (k-NN) and logistic regression (LR), are explored for differentiating muscle fatigue. The results show that about 60% of the proposed features are statistically highly significant and suitable for muscle fatigue analysis. The results also show that eight proposed features ranked among the top 10 features. The classification accuracy with conventional features in dynamic contraction is 75%. This accuracy improved to 88% with k-NN-GA combination with proposed new feature set. Based on the results, it appears that the multifractal spectrum analysis with new singularity features can be used for clinical evaluation in varied neuromuscular conditions, and the proposed features can also be useful in analyzing other physiological time series.

References

References
1.
Dutta
,
S.
,
Ghosh
,
D.
,
Samanta
,
S.
, and
Dey
,
S.
,
2014
, “
Multifractal Parameters as an Indication of Different Physiological and Pathological States of the Human Brain
,”
Physica A
,
396
, pp.
155
163
.
2.
Merletti
,
R.
, and
Farina
,
D.
,
2009
, “
Analysis of Intramuscular Electromyogram Signals
,”
Philos. Trans. A
,
367
(
1887
), pp.
357
368
.
3.
Merletti
,
R.
, and
Parker
,
P. A.
,
2004
,
Electromyography: Physiology, Engineering, and Non-Invasive Applications
,
Wiley
, Hoboken,
NJ
.
4.
Phinyomark
,
A.
,
Phukpattaranont
,
P.
, and
Limsakul
,
C.
,
2012
, “
Feature Reduction and Selection for EMG Signal Classification
,”
Expert Syst. Appl.
,
39
(
8
), pp.
7420
7431
.
5.
Barry
,
B. K.
, and
Enoka
,
R. M.
,
2007
, “
The Neurobiology of Muscle Fatigue: 15 Years Later
,”
Integr. Comput. Biol.
,
47
(
4
), pp.
465
473
.
6.
Hug
,
F.
,
2011
, “
Can Muscle Coordination be Precisely Studied by Surface Electromyography?
,”
J. Electromyogr. Kinesiol.
,
21
(
1
), pp.
1
12
.
7.
Merletti
,
R.
, and
Farina
,
D.
,
2008
, “
Surface EMG Processing: Introduction to the Special Issue
,”
Biomed. Signal Process. Control
,
3
(
2
), pp.
115
117
.
8.
Kumar
,
D. K.
,
Arjunan
,
S. P.
, and
Naik
,
G. R.
,
2011
, “
Measuring Increase in Synchronization to Identify Muscle Endurance Limit
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
19
(
5
), pp.
578
587
.
9.
Pereira
,
G. R.
,
de Oliveira
,
L. F.
, and
Nadal
,
J.
,
2013
, “
Reducing Cross Terms Effects in the Choi–Williams Transform of Mioelectric Signals
,”
Comput. Methods Programs Biomed.
,
111
(
3
), pp.
685
692
.
10.
Venugopal
,
G.
, and
Ramakrishnan
,
S.
,
2014
, “
Analysis of Progressive Changes Associated With Muscle Fatigue in Dynamic Contraction of Biceps Brachii Muscle Using Surface EMG Signals and Bispectrum Features
,”
Biomed. Eng. Lett.
,
4
(
3
), pp.
269
276
.
11.
González-Izal
,
M.
,
Malanda
,
A.
,
Gorostiaga
,
E.
, and
Izquierdo
,
M.
,
2012
, “
Electromyographic Models to Assess Muscle Fatigue
,”
J. Electromyogr. Kinesiol.
,
22
(
4
), pp.
501
512
.
12.
Kantelhardt
,
J. W.
,
Zschiegner
,
S. A.
,
Koscielny-bunde
,
E.
,
Havlin
,
S.
,
Bunde
,
A.
, and
Stanley
,
H. E.
,
2002
, “
Multifractal Detrended Fluctuation Analysis of Nonstationary Time Series
,”
Phys. A Stat. Mech. Appl.
,
316
, pp.
87
114
.
13.
Alessio
,
E.
,
Carbone
,
A.
,
Castelli
,
G.
, and
Frappietro
,
V.
,
2002
, “
Second-Order Moving Average and Scaling of Stochastic Time
,”
Eur. Phys. J. B
,
27
(
2
), pp.
197
200
.
14.
Gu
,
G.-F.
, and
Zhou
,
W.-X.
,
2010
, “
Detrending Moving Average Algorithm for Multifractals
,”
Phys. Rev. E
,
82
(
1
), p.
11136
.
15.
Ghosh
,
D.
,
Dutta
,
S.
, and
Chakraborty
,
S.
,
2014
, “
Multifractal Detrended Cross-Correlation Analysis for Epileptic Patient in Seizure and Seizure Free Status
,”
Chaos Solitons Fractals
,
67
, pp.
1
10
.
16.
Ghosh
,
D.
,
Dutta
,
S.
, and
Samanta
,
S.
,
2012
, “
Fluctuation of Gold Price: A Multifractal Approach
,”
Acta Phys. Pol. B
,
43
(
6
), pp.
1261
1274
.
17.
Dutta
,
S.
,
Ghosh
,
D.
, and
Chatterjee
,
S.
,
2013
, “
Multifractal Detrended Fluctuation Analysis of Human Gait Diseases
,”
Front. Physiol.
,
4
, p.
274
.
18.
Ihlen
,
E. A.
,
2012
, “
Introduction to Multifractal Detrended Fluctuation Analysis in matlab
,”
Front. Physiol.
,
3
, pp.
1
18
.
19.
West
,
B. J.
,
2012
,
Fractal Physiology and Chaos in Medicine
,
World Scientific
,
Singapore
.
20.
Marri
,
K.
, and
Swaminathan
,
R.
,
2016
, “
Analysis of Biceps Brachii Muscles in Dynamic Contraction Using sEMG Signals and Multifractal DMA Algorithm
,”
Int. J. Signal Process. Syst.
,
4
(
1
), pp.
79
85
.
21.
Venugopal
,
G.
,
Navaneethakrishna
,
M.
, and
Ramakrishnan
,
S.
,
2014
, “
Extraction and Analysis of Multiple Time Window Features Associated With Muscle Fatigue Conditions Using sEMG Signals
,”
Expert Syst. Appl.
,
41
(
6
), pp.
2652
2659
.
22.
Marri
,
K.
, and
Swaminathan
,
R.
,
2015
, “
Identification of Onset of Fatigue in Biceps Brachii Muscles Using Surface EMG and Multifractal DMA Algorithm
,”
Biomed. Sci. Instrum.
,
51
, pp.
107
114
http://www.ncbi.nlm.nih.gov/pubmed/25996706.
23.
Hermens
,
H. J.
,
Freriks
,
B.
,
Disselhorst-Klug
,
C.
, and
Rau
,
G.
,
2000
, “
Development of Recommendations for SEMG Sensors and Sensor Placement Procedures
,”
J. Electromyogr. Kinesiol.
,
10
(
5
), pp.
361
374
.
24.
Zhou
,
W.
,
Dang
,
Y.
, and
Gu
,
R.
,
2013
, “
Efficiency and Multifractality Analysis of CSI 300 Based on Multifractal Detrending Moving Average Algorithm
,”
Physica A
,
392
(
6
), pp.
1429
1438
.
25.
Xiong
,
G.
,
Zhang
,
S.
, and
Zhao
,
H.
,
2014
, “
Multifractal Spectrum Distribution Based on Detrending Moving Average
,”
Chaos Solitons Fractals
,
65
, pp.
97
110
.
26.
Lin
,
J.
, and
Chen
,
Q.
,
2013
, “
Fault Diagnosis of Rolling Bearings Using Multifractal Detrended Fluctuation Analysis and Mahalanobis Distance Criterion
,”
Mech. Syst. Signal Process.
,
38
(
2
), pp.
515
533
.
27.
Huang
,
H.-P.
, and
Chen
,
C.-Y.
,
1999
, “
Development of a Myoelectric Discrimination System for a Multi-Degree Prosthetic Hand
,”
IEEE International Conference on Robotics and Automation
, Vol.
3
, pp.
2392
2397
.
28.
Du
,
S.
, and
Vuskovic
,
M.
,
2004
, “
Temporal vs. Spectral Approach to Feature Extraction From Prehensile EMG Signals
,”
IEEE International Conference on Information Reuse and Integration (IRI)
, pp.
344
350
.
29.
Oskoei
,
M. A.
,
Member
,
S.
,
Hu
,
H.
, and
Member
,
S.
,
2008
, “
Support Vector Machine-Based Classification Scheme for Myoelectric Control Applied to Upper Limb
,”
IEEE Trans. Biomed. Eng.
,
55
(
8
), pp.
1956
1965
.
30.
Guyon
,
I.
, and
Elisseeff
,
A.
,
2003
, “
An Introduction to Variable and Feature Selection
,”
J. Mach. Learn. Res.
,
3
, pp.
1157
1182
http://www.jmlr.org/papers/volume3/guyon03a/guyon03a.pdf.
31.
Deng
,
L.
,
Pei
,
J.
,
Ma
,
J.
, and
Lee
,
D. L.
,
2004
, “
A Rank Sum Test Method for Informative Gene Discovery
,”
Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM
, New York, pp.
410
419
.
32.
Pereira
,
A.
,
Vega
,
J.
,
Moreno
,
R.
,
Dormido-Canto
,
S.
,
Rattá
,
G. A.
, and
Pavón
,
F.
,
2015
, “
Feature Selection for Disruption Prediction From Scratch in JET by Using Genetic Algorithms and Probabilistic Predictors
,”
Fusion Eng. Des.
,
96–97
, pp.
907
911
.
33.
Hall
,
M.
,
Frank
,
E.
,
Holmes
,
G.
,
Pfahringer
,
B.
,
Reutemann
,
P.
, and
Witten
,
I. H.
,
2009
, “
The WEKA Data Mining Software: An Update
,”
ACM SIGKDD Explor. Newsl.
,
11
(
1
), pp.
10
18
.
34.
Konar
,
P.
,
Sil
,
J.
, and
Chattopadhyay
,
P.
,
2015
, “
Knowledge Extraction Using Data Mining for Multi-Class Fault Diagnosis of Induction Motor
,”
Neurocomputing
,
166
, pp.
14
25
.
35.
Cai
,
H.
,
Ruan
,
P.
,
Ng
,
M.
, and
Akutsu
,
T.
,
2014
, “
Feature Weight Estimation for Gene Selection: A Local Hyperlinear Learning Approach
,”
BMC Bioinform.
,
15
(
1
), p.
70
.
36.
Wood
,
T. M.
,
Maddalozzo
,
G. F.
, and
Harter
,
R. A.
,
2002
, “
Accuracy of Seven Equations for Predicting 1-RM Performance of Apparently Healthy, Sedentary Older Adults
,”
Meas. Phys. Educ. Exercise Sci.
,
6
(
2
), pp.
67
94
.
37.
Clarkson
,
K. L.
,
2006
, “
Nearest-Neighbor Searching and Metric Space Dimensions
,” Nearest-Neighbor Methods for Learning and Vision: Theory and Practice, Shakhnarovich, G., Darrell, T., Indyk, P., eds.,
MIT Press
,
Cambridge, MA
.
38.
Maalouf
,
M.
, and
Siddiqi
,
M.
,
2014
, “
Weighted Logistic Regression for Large-Scale Imbalanced and Rare Events Data
,”
Knowl. Based Syst.
,
59
, pp.
142
148
.
39.
Canu
,
S.
, and
Alex
,
S.
,
2006
, “
Kernel Methods and the Exponential Family
,”
Neurocomputing
,
69
(
7
), pp.
714
720
.
40.
Cifrek
,
M.
,
Medved
,
V.
,
Tonković
,
S.
, and
Ostojić
,
S.
,
2009
, “
Surface EMG Based Muscle Fatigue Evaluation in Biomechanics
.,”
Clin. Biomech. (Bristol, Avon)
,
24
(
4
), pp.
327
340
.
You do not currently have access to this content.