Wireless capsule endoscopes (WCE) are a new technology for inspection of the intestines, which offer many advantages over conventional endoscopes, while devices currently in use are passive and can only follow the natural transit of the intestines. There is a considerable interest in methods of controlled actuation for these devices. In this paper, an actuation system based on magnetic levitation is proposed, utilizing a small permanent magnet within the capsule and an arrangement of digitally controlled electromagnet placed on a movable frame. The objective of this paper is to design a multi-input multi-output (MIMO), three degrees-of-freedom (3DOF) tracking system for capsule endoscope. Two techniques, entire eigenstructure assignment (EEA) and linear quadratic regulator (LQR), are presented to design the controller of the system. The performance of the EEA and LQR controllers was compared based on the stability parameters to validate the proposed actuation system. Finally, simulation results suggest that the LQR approach can be used to synthesize a suitable and simple controller for this application.

References

References
1.
Zhang
,
W.
,
Chen
,
Y.
, and
Huang
,
P.
,
2006
, “
Study on the System of a Capsule Endoscope Driven by an Outer Rotational Magnetic Field
,” 2nd
IEEE/ASME
International Conference on Mechatronics and Embedded Systems and Applications
,
Beijing
,
China
, Aug. 13–16, pp. 1–5.
2.
Kosa
,
G.
,
Jakab
,
P.
,
Jólesz
,
F.
, and
Hata
,
N.
,
2008
, “
Swimming Capsule Endoscope Using Static and RF Magnetic Field of MRI for Propulsion
,”
IEEE
International Conference on Robotics and Automation
, Pasadena, CA, May 19–23, pp.
19
23
.
3.
Chen
,
D.
,
Hue
,
C.
,
Wang
,
L.
, and
Meng
,
Q.-H.
,
2007
, “
Active Actuation System of Wireless Capsule Endoscope Based on Magnetic Field
,”
IEEE
International Conference on Robotics and Biomimetics
, Sanya, China, Dec. 15–18, pp.
99
103
.
4.
Sendoh
,
M.
,
Ishiyama
,
K.
, and
Arai
,
K.
,
2002
, “
Direction and Individual Control of Magnetic Micromachine
,”
IEEE Trans. Magn.
,
38
(
5
), pp.
3356
3358
.
5.
Sendoh
,
M.
,
Ishiyama
,
K.
, and
Arai
,
K.
,
2003
, “
Fabrication of Magnetic Actuator for Use in a Capsule Endoscope
,”
IEEE Trans. Magn.
,
39
(
5
), pp.
3232
3234
.
6.
Wang
,
X.
,
Meng
,
Q. H.
, and
Chen
,
X.
,
2010
, “
A Locomotion Mechanism With External Magnetic Guidance for Active Capsule Endoscope
,”
32nd Annual International Conference of the
IEEE EMBS
, Buenos Aires, Argentina, Aug. 31–Sept. 4, pp.
14375
14378
.
7.
Simi
,
M.
,
Valdastri
,
P.
,
Quaglia
,
C.
,
Menciassi
,
A.
, and
Dario
,
P.
,
2010
, “
Design, Fabrication, and Testing of a Capsule With Hybrid Locomotion for Gastrointestinal Tract Exploration
,”
IEEE/ASME Trans. Mechatronics
,
15
(
2
), pp.
170
180
.
8.
Quirini
,
M.
,
Menciassi
,
A.
,
Scapellato
,
S.
,
Stefanini
,
C.
, and
Dario
,
P.
,
2008
, “
Design and Fabrication of a Motor Legged Capsule for the Active Exploration of the Gastrointestinal Tract
,”
IEEE/ASME Trans. Mechatronics
,
13
(
2
), pp.
169
179
.
9.
Quirini
,
M.
,
Scapellato
,
S.
,
Menciassi
,
A.
,
Dario
,
P.
,
Rieber
,
F.
,
Ho
,
C.
,
Schostek
,
S.
, and
Schurr
,
M.
,
2008
, “
Feasibility Proof of a Legged Locomotion Capsule for the GI Tract
,”
Gastrointest. Endosc.
,
67
(
7
), pp.
1153
1158
.
10.
Valdastri
,
P.
,
Webster
,
R.
,
Quaglia
,
C.
,
Quirini
,
M.
,
Menciassi
,
A.
, and
Dario
,
P.
,
2009
, “
A New Mechanism for Meso-Scale Legged Locomotion in Lompliant Tubular Environments
,”
IEEE Trans. Rob.
,
25
(
5
), pp.
1047
1057
.
11.
Sitti
,
M.
, and
Yim
,
S.
,
2011
, “
Design and Analysis of a Magnetically Actuated and Compliant Capsule Endoscopic Robot
,”
IEEE
International Conference on Robotics and Automation
,
Shanghai
,
China
, May 9–13, pp.
9
13
.
12.
Yim
,
S.
, and
Sitti
,
M.
,
2012
, “
Design and Rolling Locomotion of a Magnetically Actuated Soft Capsule Endoscope
,”
IEEE Trans. Rob.
,
28
(
1
), pp.
183
194
.
13.
Lien
,
G.
,
Liu
,
C.
,
Jiang
,
J.
,
Chuang
,
C.
, and
Teng
,
M.
,
2012
, “
Magnetic Control System Targeted for Capsule Endoscopic Operations in the Stomach-Design, Fabrication, and In Vitro and Ex Vivo Evaluations
,”
IEEE Trans. Biomed. Eng.
,
59
(
7
), pp.
2068
2079
.
14.
Carpi
,
F.
,
Galbiati
,
S.
, and
Carpi
,
A.
,
2007
, “
Controlled Navigation of Endoscopic Capsule: Concept and Preliminary Experimental Investigations
,”
IEEE Trans. Biomed. Eng.
,
54
(
11
), pp.
2028
2038
.
15.
Carpi
,
F.
,
Kastelein
,
N.
, and
Pappone
,
C.
,
2011
, “
Magnetically Controllable Gastrointestinal Steering of Video Capsules
,”
IEEE Trans. Biomed. Eng.
,
58
(
2
), pp.
231
234
.
16.
Wangtrheem
,
W.
,
2006
, “
A Study on RF Based Wireless Capsule Endoscope
,”
IEEE International Conference on Mechatronics and Automation
, pp.
1663
1667
.
17.
Ogata
,
K.
,
1997
,
Modern Control Engineering
,
Prentice-Hall International
,
Upper Saddle River, NJ
.
18.
Coffey
,
W.
,
2000
, “
Levitation Force Between a Point Magnetic Dipole and Superconducting Sphere
,”
J. Supercond.
,
13
(
3
), pp.
381
388
.
19.
Tumanski
,
S.
,
2007
, “
Induction Coil Sensors—A Review
,”
Meas. Sci. Technol.
,
18
,
R31
R46
.
20.
Mohammed
,
I.
,
Sharif
,
B.
, and
Neasham
,
J.
,
2012
, “
Design and Implementation of a Magnetic Levitation Control System for Robotically Actuated Capsule Endoscopes
,” IEEE
ROSE2012
Conference
, Magdeburg, Germany, Nov. 16–18, pp.
121
126
.
21.
Chung
,
L.
,
Lin
,
C.
, and
Chu
,
S.
,
1993
, “
Optimal Direct Output Feedback Structural Control
,”
IEEE J. Eng. Mech.
,
119
(
11
), pp.
2157
2173
.
22.
Matheu
,
E.
,
Singh
,
M.
, and
Beattie
,
C.
,
1998
, “
Output-Feedback Sliding-Mode Control With Generalized Sliding Surface for Civil Structures Under Earthquake Excitation
,”
Earthquake Eng. Struct. Dyn.
,
27
(
3
), pp.
259
283
.
23.
Purohit
,
S.
, and
Chandiramani
,
N.
,
2011
, “
Optimal Static Output Feedback Control Using MR Damper
,”
Struct. Control Health Monit.
,
18
(
8
), pp.
852
868
.
24.
Mohammed
,
I.
,
Sharif
,
B.
,
Neasham
,
J.
, and
Giaouris
,
D.
,
2011
, “
Novel Mimo 4-DOF Position Control for Capsule Endoscope
,”
IEEE International Symposium on Circuits and Systems
(
ISCAS
), Rio de Janeiro, Brazil, May 15–18, pp.
909
912
.
25.
D'azzo
,
J.
,
1995
,
Linear Control System Analysis and Design Conventional and Modern
,
McGraw-Hill
,
New York
.
26.
Barsaiyan
,
P.
, and
Purwar
,
S.
,
2010
, “
Comparison of State Feedback Controller Design Methods for Mimo Systems
,”
IEEE
International Conference on Power, Control and Embedded Systems
, Allahabad, India, Nov. 29–Dec. 1, pp. 1–6.
27.
Tewari
,
A.
,
2005
,
Modern Control Design With Matlab and Simulink
,
Wiley
,
Hoboken, NJ
.
28.
Hasbullah
,
F.
, and
Faris
,
W.
,
2010
, “
A Comparative Analysis of LQR and Fuzzy Logic Controller for Active Suspension Using Half Car Model
,”
IEEE
International Conference on Control Automation Robotics and Vision
, Singapore, Dec. 7–10, pp.
2415
2420
.
29.
Kaleemullah
,
M.
,
Faris
,
W.
, and
Hasbullah
,
F.
,
2011
, “
Design of Robust h∞, Fuzzy and LQR Controller for Active Suspension of a Quarter Car Model
,”
4th International Conference on Mechatronics
(
ICOM
), Kuala Lumpur, Malaysia, May 17–19, pp. 1–6.
30.
Alexandridis
,
A.
,
1996
, “
Optimal Entire Eigenstructure Assignment of Discrete-Time Linear Systems
,”
IEE Proc.: Control Theory Appl.
,
143
(
3
), pp.
301
304
.
You do not currently have access to this content.