This paper derives several well-posedness (existence and uniqueness) and stability results for nonlinear stochastic distributed parameter systems (SDPSs) governed by nonlinear partial differential equations (PDEs) subject to both state-dependent and additive stochastic disturbances. These systems do not need to satisfy global Lipschitz and linear growth conditions. First, the nonlinear SDPSs are transformed to stochastic evolution systems (SESs), which are governed by stochastic ordinary differential equations (SODEs) in appropriate Hilbert spaces, using functional analysis. Second, Lyapunov sufficient conditions are derived to ensure well-posedness and almost sure (a.s.) asymptotic and practical stability of strong solutions. Third, the above results are applied to study well-posedness and stability of the solutions of two exemplary SDPSs.

References

References
1.
Dowell
,
E.
,
1975
,
Aeroelasticity of Plates and Shells
,
Noordhoff
,
Leyden, The Netherlands
.
2.
Faltinsen
,
O.
,
1993
,
Sea Loads on Ships and Offshore Structures
,
Cambridge University Press
,
Cambridge, UK
.
3.
Meirovitch
,
L.
,
1997
,
Principles and Techniques of Vibrations
,
Prentice-Hall
,
Upper Saddle River, NJ
.
4.
Khasminskii
,
R.
,
1980
,
Stochastic Stability of Differential Equations
,
S&N International
,
Rockville, MD
.
5.
Deng
,
H.
,
Krstic
,
M.
, and
Williams
,
R.
,
2001
, “
Stabilization of Stochastic Nonlinear Systems Driven by Noise of Unknown Covariance
,”
IEEE Trans. Autom. Control
,
46
(
8
), pp.
1237
1253
.
6.
Mao
,
X.
,
2007
,
Stochastic Differential Equations and Applications
,
2nd ed.
,
Woodhead Publishing
,
Cambridge, UK
.
7.
Do
,
K. D.
,
2015
, “
Global Inverse Optimal Stabilization of Stochastic Nonholonomic Systems
,”
Syst. Control Lett.
,
75
(
2015
), pp.
41
55
.
8.
Yosida
,
K.
,
1968
,
Functional Analysis
,
Springer-Verlag
,
Heidelberg, Germany
.
9.
Pardoux
,
E.
,
1979
, “
Stochastic Partial Differential Equations and Filtering of Diffusion Processes
,”
Stochastics
,
3
(
1–4
), pp.
127
167
.
10.
Liu
,
K.
,
2006
,
Stability of Infinite Dimensional Stochastic Differential Equations With Applications
,
Chapman and Hall/CRC
,
Boca Raton, FL
.
11.
Chow
,
P. L.
,
2007
,
Stochastic Partial Differential Equations
,
Chapman & Hall/CRC
,
Boca Raton, FL
.
12.
Prato
,
G. D.
, and
Zabczyk
,
J.
,
1992
,
Stochastic Equations in Infinite Dimensions
,
Cambridge University Press
,
Cambridge, UK
.
13.
Liu
,
R.
, and
Mandrekar
,
V.
,
1997
, “
Stochastic Semilinear Evolution Equations: Lyapunov Function, Stability and Ultimate Boundedness
,”
J. Math. Anal. Appl.
,
212
(
2
), pp.
537
553
.
14.
Gawarecki
,
L.
, and
Mandrekar
,
V.
,
2011
,
Stochastic Differential Equations in Infinite Dimensions With Applications to Stochastic Partial Differential Equations
,
Springer
,
Heidelberg, Germany
.
15.
Stanway
,
R.
, and
Burrows
,
C. R.
,
1981
, “
Active Vibration Control of a Flexible Rotor on Flexibly-Mounted Journal Bearings
,”
ASME J. Dyn. Syst. Meas. Control
,
103
(
4
), pp.
383
388
.
16.
Fard
,
M. P.
, and
Sagatun
,
S. I.
,
2001
, “
Exponential Stabilization of a Transversely Vibrating Beam by Boundary Control Via Lyapunov's Direct Method
,”
ASME J. Dyn. Syst. Meas. Control
,
123
(
2
), pp.
195
200
.
17.
Fung
,
R. F.
,
Wu
,
J. M.
, and
Wu
,
S. L.
,
1999
, “
Stabilization of an Axially Moving String by Nonlinear Boundary Feedback
,”
ASME J. Dyn. Syst. Meas. Control
,
121
(
1
), pp.
117
121
.
18.
Fung
,
R. F.
, and
Tseng
,
C. C.
,
1999
, “
Boundary Control of an Axially Moving String Via Lyapunov Method
,”
ASME J. Dyn. Syst. Meas. Control
,
121
(
1
), pp.
105
110
.
19.
Do
,
K. D.
, and
Pan
,
J.
,
2008
, “
Boundary Control of Transverse Motion of Marine Risers With Actuator Dynamics
,”
J. Sound Vib.
,
318
(
4–5
), pp.
768
791
.
20.
Do
,
K. D.
, and
Pan
,
J.
,
2009
, “
Boundary Control of Three-Dimensional Inextensible Marine Risers
,”
J. Sound Vib.
,
327
(
3–5
), pp.
299
321
.
21.
Do
,
K. D.
,
2011
, “
Global Stabilization of Three-Dimensional Flexible Marine Risers by Boundary Control
,”
Ocean Syst. Eng.
,
1
(
2
), pp.
171
194
.
22.
Ge
,
S. S.
,
He
,
W.
,
How
,
B.
, and
Choo
,
Y. S.
,
2010
, “
Boundary Control of a Coupled Nonlinear Flexible Marine Riser
,”
IEEE Trans. Control Syst. Technol.
,
18
(
5
), pp.
1080
1091
.
23.
He
,
W.
,
Ge
,
S. S.
,
How
,
B. V.
,
Choo
,
Y. S.
, and
Hong
,
K. S.
,
2011
, “
Robust Adaptive Boundary Control of a Flexible Marine Riser With Vessel Dynamics
,”
Automatica
,
47
(
4
), pp.
722
732
.
24.
Nguyen
,
T. L.
,
Do
,
K. D.
, and
Pan
,
J.
,
2013
, “
Boundary Control of Two-Dimensional Marine Risers With Bending Couplings
,”
J. Sound Vib.
,
332
(
16
), pp.
3605
3622
.
25.
Bohm
,
M.
,
Krstic
,
M.
,
Kuchler
,
S.
, and
Sawodny
,
O.
,
2014
, “
Modelling and Boundary Control of a Hanging Rope Immersed in Water
,”
ASME J. Dyn. Syst. Meas. Control
,
136
(
1
), p.
011006
.
26.
Do
,
K. D.
,
2016
, “
Boundary Control of Elastic Systems
,”
J. Appl. Math. Comput.
,
51
(
1
), pp.
315
339
.
27.
Lions
,
J.
,
1978
, “
On Some Questions in Boundary Value Problems of Mathematical Physics
,”
Contemporary Developments in Continuum Mechanics and Partial Differential Equations
, Vol.
30
,
G. M.
de La Penha
, and
L. A. J.
Medeiros
, eds.,
Elsevier, Amsterdam
,
The Netherlands
, pp.
284
346
.
28.
Khalil
,
H.
,
2002
,
Nonlinear Systems
,
Prentice Hall
,
Upper Saddle River, NJ
.
29.
Krstic
,
M.
,
Kanellakopoulos
,
I.
, and
Kokotovic
,
P.
,
1995
,
Nonlinear and Adaptive Control Design
,
Wiley
,
New York
.
30.
Touijer
,
N.
, and
Kamoun
,
S.
,
2015
, “
Design of Robust Self-Tuning Control Schemes for Stochastic Systems Described by Input-Output Mathematical Models
,”
Int. J. Innovative Comput. Inf. Control
,
11
(
3
), pp.
1101
1112
.
31.
Shi
,
P.
, and
Li
,
F.
,
2015
, “
A Survey on Markovian Jump Systems: Modeling and Design
,”
Int. J. Control Autom. Syst.
,
13
(
1
), pp.
1
16
.
32.
Li
,
F.
,
Shi
,
P.
,
Wu
,
L.
,
Basin
,
M. V.
, and
Lim
,
C. C.
,
2015
, “
Quantized Control Design for Cognitive Radio Networks Modeled as Nonlinear Semi-Markovian Jump Systems
,”
IEEE Trans. Ind. Electron.
,
62
(
4
), pp.
2330
2340
.
33.
Li
,
F.
,
Wu
,
L.
,
Shi
,
P.
, and
Lim
,
C. C.
,
2015
, “
State Estimation and Sliding Mode Control for Semi-Markovian Jump Systems With Mismatched Uncertainties
,”
Automatica
,
51
(
2015
), pp.
385
393
.
34.
Deng
,
H.
, and
Krstic
,
M.
,
1997
, “
Stochastic Nonlinear Stabilization—Part I: A Backstepping Design
,”
Syst. Control Lett.
,
32
(
3
), pp.
143
150
.
35.
Evans
,
L.
,
2000
,
Partial Differential Equations
,
American Mathematical Society
,
Providence, RI
.
36.
Adams
,
R. A.
, and
Fournier
,
J. J. F.
,
2003
,
Sobolev Spaces
,
2nd ed.
,
Academic Press
,
Oxford, UK
.
37.
Prevot
,
C.
, and
Rockner
,
M.
,
2007
,
A Concise Course on Stochastic Partial Differential Equations
,
Springer
,
Heidelberg, Germany
.
38.
Hardy
,
G.
,
Littlewood
,
J. E.
, and
Polya
,
G.
,
1989
,
Inequalities
,
2nd ed.
,
Cambridge University Press
,
Cambridge, UK
.
39.
Do
,
K. D.
, and
Pan
,
J.
,
2015
, “
Optimal Sensor and Actuator Locations in Linear Distributed Parameter Systems
,”
Appl. Math. Sci.
,
9
(
17
), pp.
803
820
.
40.
Do
,
K. D.
,
2014
, “
Inverse Optimal Control of Linear Distributed Parameter Systems
,”
Appl. Math. Sci.
,
8
(
7
), pp.
293
313
.
41.
Richtmyer
,
R. D.
, and
Morton
,
K. W.
,
1967
,
Difference Methods for Initial-Value Problems
,
Wiley
,
New York
.
You do not currently have access to this content.