This paper integrates a previously developed iterative learning identification (ILI) (Liu, N., and Alleyne, A. G., 2016, “Iterative Learning Identification for Linear Time-Varying Systems,” IEEE Trans. Control Syst. Technol., 24(1), pp. 310–317) and iterative learning control (ILC) algorithms (Bristow, D. A., Tharayil, M., and Alleyne, A. G., 2006, “A Survey of Iterative Learning Control,” IEEE Control Syst. Mag., 26(3), pp. 96–114), into a single norm-optimal framework. Similar to the classical separation principle in linear systems, this work provides conditions under which the identification and control can be combined and guaranteed to converge. The algorithm is applicable to a class of linear time-varying (LTV) systems with parameters that vary rapidly and analysis provides a sufficient condition for algorithm convergence. The benefit of the integrated ILI/ILC algorithm is a faster tracking error convergence in the iteration domain when compared with an ILC using fixed parameter estimates. A simple example is introduced to illustrate the primary benefits. Simulations and experiments are consistent and demonstrate the convergence speed benefit.

References

References
1.
Bristow
,
D. A.
,
Tharayil
,
M.
, and
Alleyne
,
A. G.
,
2006
, “
A Survey of Iterative Learning Control
,”
IEEE Control Syst. Mag.
,
26
(
3
), pp.
96
114
.
2.
Wang
,
D.
,
2000
, “
On D-Type and P-Type ILC Designs and Anticipatory Approach
,”
Int. J. Control
,
73
(
10
), pp.
890
901
.
3.
Chen
,
Y.
,
Gong
,
Z.
, and
Wen
,
C.
,
1998
, “
Analysis of a High-Order Iterative Learning Control Algorithm for Uncertain Nonlinear Systems With State Delays
,”
Automatica
,
34
(
3
), pp.
345
353
.
4.
Barton
,
K. L.
,
Bristow
,
D. A.
, and
Alleyne
,
A. G.
,
2010
, “
A Numerical Method for Determining Monotonicity and Convergence Rate in Iterative Learning Control
,”
Int. J. Control
,
83
(
2
), pp.
219
226
.
5.
Barton
,
K. L.
, and
Alleyne
,
A. G.
,
2011
, “
A Norm Optimal Approach to Time-Varying ILC With Application to a Multi-Axis Robotic Testbed
,”
IEEE Trans. Control Syst. Technol.
,
19
(
1
), pp.
166
180
.
6.
Owens
,
D. H.
, and
Hätönen
,
J.
,
2005
, “
Iterative Learning Control—An Optimization Paradigm
,”
Annu. Rev. Control
,
29
(
1
), pp.
57
70
.
7.
Lee
,
J. H.
,
Lee
,
K. S.
, and
Kim
,
W. C.
,
2000
, “
Model-Based Iterative Learning Control With a Quadratic Criterion for Time-Varying Linear Systems
,”
Automatica
,
36
(
5
), pp.
641
657
.
8.
Chien
,
C.
,
1998
, “
A Discrete Iterative Learning Control for a Class of Nonlinear Time-Varying Systems
,”
IEEE Trans. Autom. Control
,
43
(
5
), pp.
748
752
.
9.
Bukkemsm
,
B.
,
Kostic
,
D.
,
De Jager
,
B.
, and
Steinbuch
,
M.
,
2005
, “
Learning-Based Identification and Iterative Learning Control of Direct-Drive Robots
,”
IEEE Trans. Control Syst. Technol.
,
13
(
4
), pp.
537
549
.
10.
Hamamoto
,
K.
, and
Sugie
,
T.
,
2002
, “
Iterative Learning Control for Robotic Manipulators Using the Finite Dimensional Input Subspace
,”
IEEE Trans. Rob. Autom.
,
18
(
4
), pp.
632
635
.
11.
Norrlöf
,
M.
,
2002
, “
An Adaptive Iterative Learning Control Algorithm With Experiments on an Industrial Robot
,”
IEEE Trans. Rob. Autom.
,
18
(
2
), pp.
245
251
.
12.
Tayebi
,
A.
, and
Islam
,
S.
,
2006
, “
Adaptive Iterative Learning Control for Robot Manipulators: Experimental Results
,”
Control Eng. Pract.
,
14
(
7
), pp.
843
851
.
13.
Tayebi
,
A.
,
2004
, “
Adaptive Iterative Learning Control for Robot Manipulators
,”
Automatica
,
40
(
7
), pp.
1195
1203
.
14.
Liu
,
C.
,
Xu
,
J.
, and
Wu
,
J.
,
2009
, “
Iterative Learning Control With High-Order Internal Model for Linear Time-Varying Systems
,”
American Control Conference
, St. Louis, MO, June 10–12, pp.
1634
1639
.
15.
Yin
,
C.
,
Xu
,
J.
, and
Hou
,
Z.
,
2010
, “
A High-Order Internal Model Based Iterative Learning Control Scheme for Nonlinear Systems With Time-Iteration Varying Parameters
,”
IEEE Trans. Autom. Control
,
55
(
11
), pp.
2665
2670
.
16.
Chen
,
W.
, and
Zhang
,
L.
,
2010
, “
Adaptive Iterative Learning Control for Nonlinearly Parameterized Systems With Unknown Time-Varying Delays
,”
Int. J. Control. Autom. Syst.
,
8
(
2
), pp.
177
186
.
17.
Tayebi
,
A.
, and
Chien
,
C.-J.
,
2007
, “
A Unified Adaptive Iterative Learning Control Framework for Uncertain Nonlinear Systems
,”
IEEE Trans. Autom. Control
,
52
(
10
), pp.
1907
1913
.
18.
Liu
,
N.
, and
Alleyne
,
A. G.
,
2016
, “
Iterative Learning Identification for Linear Time-Varying Systems
,”
IEEE Trans. Control Syst. Technol.
,
24
(
1
), pp.
310
317
.
19.
Liu
,
N.
, and
Alleyne
,
A. G.
,
2014
, “
Iterative Learning Identification Applied to an Automated Off-Highway Vehicle
,”
IEEE Trans. Control Syst. Technol.
,
22
(
1
), pp.
331
337
.
20.
Liu
,
N.
, and
Alleyne
,
A. G.
,
2012
, “
Norm Optimal Iterative Learning Identification for Linear Time-Varying Systems
,”
ASME
Paper No. DSCC2012-MOVIC2012-8589.
21.
Pipelaars
,
G.
, and
Moore
,
K. L.
,
2014
, “
Unified Analysis of Iterative Learning and Repetitive Controllers in Trial Domain
,”
IEEE Trans. Autom. Control
,
59
(
4
), pp.
953
965
.
22.
Chen
,
C. T.
,
1999
,
Linear System Theory and Design
,
Oxford University Press
,
New York
.
23.
Niedzwiecki
,
M.
,
2000
,
Identification of Time-Varying Processes
,
Wiley
,
Baffins Lane, Chichester, West Sussex, UK
, pp.
103
137
.
24.
Campi
,
M. C.
,
Sugie
,
T.
, and
Sakai
,
F.
,
2008
, “
An Iterative Identification Method for Linear Continuous-Time Systems
,”
IEEE Trans. Autom. Control
,
53
(
7
), pp.
1661
1669
.
25.
Liu
,
N.
,
2014
, “
Learning Identification and Control for Repetitive Linear Time-Varying Systems
,” Ph.D. thesis, University of Illinois, Urbana, Champaign.
26.
Hoelzle
,
D.
, and
Alleyne
,
A. G.
,
2010
, “
Basis Task Approach to Iterative Learning Control With Applications to Micro-Robotic Deposition
,”
IEEE Trans. Control Syst. Technol.
,
19
(
5
), pp.
1138
1148
.
You do not currently have access to this content.