In this paper, a novel direct adaptive fuzzy moving sliding mode proportional integral (PI) tracking control of a three-dimensional (3D) overhead crane which is modeled by five highly nonlinear second-order ordinary differential equations is proposed. The fast and robust position regulation and antiswing control can be achieved based on the proposed approach. Due to universal approximation theorem, fuzzy control provides nonlinear controller, i.e., fuzzy logic controllers, to perform the unknown nonlinear control actions. Simultaneously, in order to achieve fast and robust regulation and to enhance robustness in the presence of disturbance and parameter variations, moving sliding mode control (SMC) is introduced to tradeoff between reaching phase and sliding phase. Hence, the sliding surface is moved by changing the magnitude of the slope by adaptive law and varying the intercept by tuning algorithm. Simulations performed using a scaled 3D mathematical model of the crane confirm that the proposed control scheme can keep the horizontal position of the payload invariable and suppress the swing of the payload effectively during the hoisting or lowing process.

References

References
1.
Moreno
,
L.
,
Acosta
,
L.
,
Mendez
,
J. A.
,
Torres
,
S.
,
Hamilton
,
A.
, and
Marichal
,
G. N.
,
1998
, “
A Self-Tuning Neuromorphic Controller: Application to the Crane Problem
,”
Control Eng. Pract.
,
6
(
12
), pp.
1475
1483
.
2.
Mendez
,
J. A.
,
Acosta
,
L.
,
Hamilton
,
A.
, and
Marichal
,
G. N.
,
1998
, “
Design of a Neural Network Based Self-Tuning Controller for an Overhead Crane
,”
IEEE
International Conference on Control Applications
, Trieste, Italy, Sept. 1–4, pp.
168
171
.
3.
Omar
,
H. M.
, and
Nayfeh
,
A. H.
,
2005
, “
Gantry Cranes Gain Scheduling Feedback Control With Friction Compensation
,”
J. Sound Vib.
,
281
(1–2), pp.
1
20
.
4.
Omar
,
H. M.
, and
Nayfeh
,
A. H.
,
2004
, “
Gain Scheduling Feedback Control of Tower Cranes With Friction Compensation
,”
J. Vib. Control
,
10
(
2
), pp.
269
289
.
5.
Wang
,
L. X.
,
1982
, “
Fuzzy Systems are Universal Approximators
,”
IEEE International Conference on Fuzzy Systems
, San Diego, CA, pp.
1163
1170
.
6.
Wang
,
L. X.
,
1994
,
Adaptive Fuzzy Systems and Control
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
7.
Wang
,
L. X.
,
1996
, “
Stable Adaptive Fuzzy Controllers With Application to Inverted Pendulum Tracking
,”
IEEE Trans. Syst. Man Cybern. -Part B
,
26
(
5
), pp.
677
691
.
8.
Lee
,
H. H.
, and
Cho
,
S. K.
,
2001
, “
A New Fuzzy-Logic Anti-Swing Control for Industrial Three-Dimensional Overhead Cranes
,”
IEEE
International Conference on Robotics and Automation
, pp.
2956
2961
.
9.
Hua
,
K. Q.
,
2000
, “
Fuzzy Anti-Swing Technology for Overhead Crane
,”
J. Civil Aviation Univ. China
,
18
(
3
), pp.
12
23
.
10.
Nalley
,
M. J.
, and
Trabia
,
M. B.
,
2000
, “
Control of Overhead Cranes Using a Fuzzy Logic Controller
,”
J. Intell. Fuzzy Syst.
,
8
(1), pp.
1
18
.
11.
Utkin
,
V. I.
,
1977
, “
Variable Structure Systems With Sliding Modes
,”
IEEE Trans. Autom. Control
,
22
(
2
), pp.
212
222
.
12.
Bartolini
,
G.
,
Oranti
,
N.
,
Pisano
,
A.
, and
Usai
,
E.
,
2000
, “
Load Swing Damping in Overhead Cranes by Sliding Mode Technique
,”
IEEE
Conference on Decision and Control
, Sydney, Australia, pp.
1697
1702
.
13.
Basher
,
A. M. H.
,
2001
, “
Swing-Free Transport Using Variable Structure Model Reference Control
,”
IEEE
Southeast Conference
, Clemson, SC, pp.
85
92
.
14.
Liu
,
D.
,
Yi
,
J.
,
Zhao
,
D.
, and
Wang
,
W.
,
2004
, “
Swing-Free Transporting of Two-Dimensional Overhead Crane Using Sliding Mode Fuzzy Control
,”
American Control Conference
, Boston, MA, June 30–July 2, pp.
1764
1769
.
15.
Liu
,
D.
,
Yi
,
J.
,
Zhao
,
D.
, and
Wang
,
W.
,
2005
, “
Adaptive Sliding Mode Fuzzy Control for a Two-Dimensional Overhead Crane
,”
Mechatronics
,
15
(
5
), pp.
505
522
.
16.
Shyu
,
K.-K.
,
Jen
,
C.-L.
, and
Shang
,
L.-J.
,
2005
, “
Design of Sliding Mode Control for Anti-Swing Control of Overhead Cranes
,” Annual Conference of
IEEE
Industrial Electronics Society
, Nov. 6–10, pp.
147
152
.
17.
Almutairi
,
N. B.
, and
Zribi
,
M.
,
2009
, “
Sliding Mode Control of a Three-Dimensional Overhead Crane
,”
J. Vib. Control
,
15
(
11
) pp.
1679
1730
.
18.
Mobayen
,
S.
,
2015
, “
Fast Terminal Sliding Mode Tracking of Non-Holonomic Systems With Exponential Decay Rate
,”
IET Control Theory Appl.
,
9
(
8
), pp.
1294
1301
.
19.
Mobayen
,
S.
,
2015
, “
An Adaptive Fast Terminal Sliding Mode Control Combined With Global Sliding Mode Scheme for Tracking Control of Uncertain Nonlinear Third-Order Systems
,”
Nonlinear Dyn.
,
82
(
1
), pp.
599
610
.
20.
Mobayen
,
S.
,
2015
, “
An Adaptive Chattering-Free PID Sliding Mode Control Based on Dynamic Sliding Manifolds for a Class of Uncertain Nonlinear Systems
,”
Nonlinear Dyn.
,
82
(
1
), pp.
53
60
.
21.
Choi
,
S.-B.
,
Park
,
D.-W.
, and
Jayasuriya
,
S.
,
1994
, “
A Time-Varying Sliding Surface for Fast and Robust Tracking Control of Second-Order Uncertain Systems
,”
Automatica
,
30
(
5
), pp.
899
904
.
22.
Park
,
D. W.
, and
Choi
,
S. B.
,
1999
, “
Moving Sliding Surfaces for High-Order Variable Structure Systems
,”
Int. J. Control
,
72
(
11
), pp.
960
970
.
23.
Lee
,
H.-H.
,
1998
, “
Modeling and Control of a Three-Dimensional Overhead Cranes
,”
ASME J. Dyn. Syst. Meas. Control
,
120
(
4
), pp.
471
476
.
24.
Liu
,
D.
,
Yi
,
J.
,
Zhao
,
D.
, and
Qang
,
W.
,
2005
, “
Adaptive Sliding Mode Fuzzy Control for Two-Dimensional Overhead Crane
,”
Mechatronics
,
15
(
5
), pp.
505
522
.
25.
Slotine
,
J. J. E.
, and
Li
,
W.
,
1991
,
Applied Nonlinear Control
,
Prentice Hall
,
Englewood Cliffs, NJ
.
You do not currently have access to this content.