State-feedback gain-scheduling controller synthesis with guaranteed performance is considered in this brief. Practical assumption has been considered in the sense that scheduling parameters are assumed to be uncertain. The contribution of this paper is the characterization of the control synthesis that parameterized linear matrix inequalities (PLMIs) to synthesize robust gain-scheduling controllers. Additive uncertainty model has been used to model measurement noise of the scheduling parameters. The resulting controllers not only ensure robustness against scheduling parameters uncertainties but also guarantee closed-loop performance in terms of H2 and H performances as well. Numerical examples and simulations are presented to illustrate the effectiveness of the synthesized controller. Compared to other control design methods from literature, the synthesized controllers achieve less conservative results as measurement noise increases.

References

References
1.
Daafouz
,
J.
,
Bernussou
,
J.
, and
Geromel
,
J.
,
2008
, “
On Inexact LPV Control Design of Continuous Time Polytopic Systems
,”
IEEE Trans. Autom. Control
,
53
(
7
), pp.
1674
1678
.
2.
Sato
,
M.
,
2010
, “
Gain-Scheduled State-Feedback Controllers Using Inexactly Measured Scheduling Parameters: Stabilizing and H Control Problems
,”
SICE J. Control, Meas. Syst. Integr.
,
3
(
4
), pp.
285
291
.
3.
Wu
,
F.
,
Yang
,
X. H.
,
Packard
,
A.
, and
Becker
,
G.
,
1996
, “
Induced L2-Norm Control for LPV Systems With Bounded Parameter Variation Rates
,”
Int. J. Robust Nonlinear Control
,
6
(
9–10
), pp.
983
998
.
4.
Sato
,
M.
,
Ebihara
,
Y.
, and
Peaucelle
,
D.
,
2010
, “
Gain-Scheduled State-Feedback Controllers Using Inexactly Measured Scheduling Parameters: H2 and H Problems
,”
American Control Conference
, pp.
3094
3099
.
5.
Sato
,
M.
,
2013
, “
Robust Gain-Scheduled Flight Controller Using Inexact Scheduling Parameters
,”
American Control Conference (ACC)
, pp.
6829
6834
.
6.
Lacerda
,
M. J.
,
Tognetti
,
E. S.
,
Oliveira
,
R. C.
, and
Peres
,
P. L.
,
2014
, “
A New Approach to Handle Additive and Multiplicative Uncertainties in the Measurement for H LPV Filtering
,”
Int. J. Syst. Sci.
(published online).
7.
Agulhari
,
C.
,
Tognetti
,
E.
,
Oliveira
,
R.
, and
Peres
,
P.
,
2013
, “
H Dynamic Output Feedback for LPV Systems Subject to Inexactly Measured Scheduling Parameters
,”
Proceedings of American Control Conference
, pp.
6060
6065
.
8.
Al-Jiboory
,
A. K.
, and
Zhu
,
G. G.
,
2015
, “
Robust Gain-Scheduling H2 Control With Imperfectly Measured Scheduling Parameters
,” (submitted).
9.
Oliveira
,
R. C. L. F.
,
Bliman
,
P.
, and
Peres
,
P. L. D.
,
2008
, “
Robust LMIs With Parameters in Multi-Simplex: Existence of Solutions and Applications
,”
47th IEEE Conference on CDC
, pp.
2226
2231
.
10.
Oliveira
,
R.
, and
Peres
,
P.
,
2007
, “
Parameter-Dependent LMIs in Robust Analysis: Characterization of Homogeneous Polynomially Parameter-Dependent Solutions Via LMI Relaxations
,”
IEEE Trans. Autom. Control
,
52
(
7
), pp.
1334
1340
.
11.
Oliveira
,
R.
,
de Oliveira
,
M.
, and
Peres
,
P.
,
2011
, “
Robust State Feedback LMI Methods for Continuous-Time Linear Systems: Discussions, Extensions and Numerical Comparisons
,”
IEEE International Symposium on CACSD
, pp.
1038
1043
.
12.
Oliveira
,
R. C. L. F.
,
Bliman
,
P.-A.
, and
Peres
,
P. L.
,
2009
, “
Selective Gain-Scheduling for Continuous-Time Linear Systems With Parameters in Multi-Simplex
,”
European Control Conference
.
13.
Geromel
,
J. C.
, and
Colaneri
,
P.
,
2006
, “
Robust Stability of Time-Varying Polytopic Systems
,”
Syst. Control Lett.
,
55
(
1
), pp.
81
85
.
14.
de Souza
,
C. E.
, and
Trofino
,
A.
,
2006
, “
Gain-Scheduled H2 Controller Synthesis for Linear Parameter Varying Systems Via Parameter-Dependent Lyapunov Functions
,”
Int. J. Robust Nonlinear Control,
16
(
5
), pp.
243
257
.
15.
Sato
,
M.
,
2008
, “
Design Method of Gain-Scheduled Controllers Not Depending on Derivatives of Parameters
,”
Int. J. Control
,
81
(
6
), pp.
1013
1025
.
16.
Pipeleers
,
G.
,
Demeulenaere
,
B.
,
Swevers
,
J.
, and
Vandenberghe
,
L.
,
2009
, “
Extended LMI Characterizations for Stability and Performance of Linear Systems
,”
Syst. Control Lett.
,
58
(
7
), pp.
510
518
.
17.
Scherer
,
C. W.
,
2006
, “
LMI Relaxations in Robust Control
,”
Eur. J. Control
,
12
(
1
), pp.
3
29
.
18.
Scherer
,
C. W.
, and
Hol
,
C. W. J.
,
2006
, “
Matrix Sum-of-Squares Relaxations for Robust Semi-Definite Programs
,”
Math. Program.
,
107
, pp.
189
211
.
19.
Peaucelle
,
D.
, and
Sato
,
M.
,
2009
, “
LMI Tests for Positive Definite Polynomials: Slack Variable Approach
,”
IEEE Trans. Autom. Control
,
54
(
4
), pp.
886
891
.
20.
Montagner
,
V. F.
,
Oliveira
,
R. C.
,
Peres
,
P. L.
, and
Bliman
,
P.-A.
,
2009
, “
Stability Analysis and Gain-Scheduled State Feedback Control for Continuous-Time Systems With Bounded Parameter Variations
,”
Int. J. Control
,
82
(
6
), pp.
1045
1059
.
21.
Agulhari
,
C. M.
,
de Oliveira
,
R. C. L. F.
, and
Peres
,
P. L. D.
,
2012
, “
Robust LMI Parser: A Computational Package to Construct LMI Conditions for Uncertain Systems
,”
XIX Brazilian Conference on Automation (CBA 2012)
, pp.
2298
2305
.
22.
Löfberg
,
J.
,
2004
, “
YALMIP: A Toolbox for Modeling and Optimization in MATLAB
,”
CACSD Conference
.
23.
Sturm
,
J.
,
1999
, “
Using SeDuMi 1.02, a MATLAB Toolbox for Optimization over Symmetric Cones
,”
Optim. Methods Software
,
11
(
1
), pp.
625
653
.
You do not currently have access to this content.