Due to the universal approximation capability of Takagi–Sugeno (T–S) fuzzy models for nonlinear dynamics, many control issues have been investigated based on fuzzy control theory. In this paper, a transformation procedure is proposed to convert fuzzy models into linear fractional transformation (LFT) models. Then, T–S fuzzy systems can be regarded as a special case of linear parameter-varying (LPV) systems which proved useful for nonlinear control problems. The newly established connection between T–S fuzzy models and LPV models provides a new perspective of the control problems for T–S fuzzy systems and facilitates the fuzzy control designs. Specifically, an output feedback gain-scheduling control design approach for T–S fuzzy systems is presented to ensure globally asymptotical stability and optimize H performance of the closed-loop systems. The control synthesis problem is cast as a convex optimization problem in terms of linear matrix inequalities (LMIs). Two examples have been used to illustrate the efficiency of the proposed method.

References

References
1.
Ying
,
H.
,
1998
, “
Sufficient Conditions on Uniform Approximation of Multivariate Functions by General Takagi-Sugeno Fuzzy Systems With Linear Rule Consequent
,”
IEEE Trans. Syst., Man Cybern., Part A: Syst. Hum.
,
28
(
4
), pp.
515
520
.
2.
Takagi
,
T.
, and
Sugeno
,
M.
,
1985
, “
Fuzzy Identification of Systems and Its Applications to Modeling and Control
,”
IEEE Trans. Syst., Man Cybern.
,
15
(
1
), pp.
116
132
.
3.
Tanaka
,
K.
,
Ikeda
,
T.
, and
Wang
,
H. O.
,
1998
, “
Fuzzy Regulators and Fuzzy Observers: Relaxed Stability Conditions and LMI-Based Designs
,”
IEEE Trans. Fuzzy Syst.
,
6
(
2
), pp.
250
265
.
4.
Tanaka
,
K.
, and
Sugeno
,
M.
,
1992
, “
Stability Analysis and Design of Fuzzy Control Systems
,”
Fuzzy Sets Syst.
,
45
(
2
), pp.
135
156
.
5.
Wang
,
H. O.
,
Tanaka
,
K.
, and
Griffin
,
M. F.
,
1996
, “
An Approach to Fuzzy Control of Nonlinear Systems: Stability and Design Issues
,”
IEEE Trans. Fuzzy Syst.
,
4
(
1
), pp.
14
23
.
6.
Lam
,
H. K.
, and
Leung
,
F. H.
,
2010
,
Stability Analysis of Fuzzy-Model-Based Control Systems: Linear-Matrix-Inequality Approach
,
Springer-Verlag
,
Berlin
.
7.
Lam
,
H. K.
,
Seneviratne
,
L. D.
, and
Ban
,
X.
,
2012
, “
Fuzzy Control of Nonlinear Systems Using Parameter-Dependent Polynomial Fuzzy Model
,”
IET Control Theory Appl.
,
6
(
11
), pp.
1645
1653
.
8.
Lo
,
J. C.
, and
Lin
,
M. L.
,
2003
, “
Robust H Nonlinear Control Via Fuzzy Static Output Feedback
,”
IEEE Trans. Circuits Syst. I: Regular Pap.
,
50
(
11
), pp.
1494
1502
.
9.
Kau
,
S. W.
,
Lee
,
H. J.
,
Yang
,
C. M.
,
Lee
,
C. H.
,
Hong
,
L.
, and
Fang
,
C. H.
,
2007
, “
Robust H Fuzzy Static Output Feedback Control of T-S Fuzzy Systems With Parametric Uncertainties
,”
Fuzzy Sets Syst.
,
158
(
2
), pp.
135
146
.
10.
Qiu
,
J.
,
Feng
,
G.
, and
Gao
,
H.
,
2010
, “
Fuzzy-Model-Based Piecewise H Static-Output-Feedback Controller Design for Networked Nonlinear Systems
,”
IEEE Trans. Fuzzy Syst.
,
18
(
5
), pp.
919
934
.
11.
Chadli
,
M.
, and
Guerra
,
T. M.
,
2012
, “
LMI Solution for Robust Static Output Feedback Control of Discrete Takagi-Sugeno Fuzzy Models
,”
IEEE Trans. Fuzzy Syst.
,
20
(
6
), pp.
1160
1165
.
12.
Lam
,
H. K.
, and
Li
,
H.
,
2013
, “
Output-Feedback Tracking Control for Polynomial Fuzzy Systems
,”
IEEE Trans. Ind. Electron.
,
60
(
12
), pp.
5830
5840
.
13.
Lo
,
J. C.
, and
Lin
,
M. L.
,
2004
, “
Observer-Based Robust H Control for Fuzzy Systems Using Two-Step Procedure
,”
IEEE Trans. Fuzzy Syst.
,
12
(
3
), pp.
350
359
.
14.
Tseng
,
C. S.
, and
Hwang
,
C. K.
,
2007
, “
Fuzzy Observer-Based Fuzzy Control Design for Nonlinear Systems With Persistent Bounded Disturbances
,”
Fuzzy Sets Syst.
,
158
(
2
), pp.
164
179
.
15.
Lam
,
H. K.
,
Li
,
H.
, and
Liu
,
H.
,
2013
, “
Stability Analysis and Control Synthesis for a Fuzzy-Observer-Based Controller of Nonlinear Systems: A Fuzzy-Model-Based Control Approach
,”
IET Control Theory Appl.
,
7
(
5
), pp.
663
672
.
16.
Li
,
J.
,
Wang
,
H. O.
,
Niemann
,
D.
, and
Tanaka
,
K.
,
2000
, “
Dynamic Parallel Distributed Compensation for Takagi-Sugeno Fuzzy Systems: An LMI Approach
,”
Inf. Sci.
,
123
(
3–4
), pp.
201
221
.
17.
Han
,
Z. X.
,
Feng
,
G.
,
Walcott
,
B. L.
, and
Ma
,
J.
,
2000
, “
Dynamic Output Feedback Controller Design for Fuzzy Systems
,”
IEEE Trans. Syst., Man, Cybern. Part B, Cybern.
,
30
(
1
), pp.
204
210
.
18.
Nguang
,
S. K.
, and
Shi
,
P.
,
2006
, “
Robust H Output Feedback Control Design for Fuzzy Dynamic Systems With Quadratic D Stability Constrains: An LMI Approach
,”
Inf. Sci.
,
176
(
15
), pp.
2161
2191
.
19.
Yoneyama
,
J.
,
2006
, “
Robust H Control Analysis and Synthesis for Takagi-Sugeno General Uncertain Fuzzy Systems
,”
Fuzzy Sets Syst.
,
157
(
16
), pp.
2205
2223
.
20.
Guelton
,
K.
,
Bouarar
,
T.
, and
Manamanni
,
N.
,
2009
, “
Robust Dynamic Output Feedback Fuzzy Lyapunov Stabilization of Takagi-Sugeno Systems: A Descriptor Redundancy Approach
,”
Fuzzy Sets Syst.
,
160
(
19
), pp.
2796
2811
.
21.
Yang
,
G. H.
, and
Dong
,
J.
,
2010
, “
Switching Fuzzy Dynamic Output Feedback H Control for Nonlinear Systems
,”
IEEE Trans. Syst., Man, Cybern. Part B, Cybern.
,
40
(
2
), pp.
505
516
.
22.
Tognetti
,
E. S.
,
Oliveira
,
R. C. L. F.
, and
Peres
,
P. L. D.
,
2012
, “
Reduced-Order Dynamic Output Feedback Control of Continuous-Time T-S Fuzzy Systems
,”
Fuzzy Sets Syst.
,
207
, pp.
27
44
.
23.
Kim
,
E.
, and
Lee
,
H.
,
2000
, “
New Approaches to Relaxed Quadratic Stability Condition of Fuzzy Control Systems
,”
IEEE Trans. Fuzzy Syst.
,
8
(
5
), pp.
523
534
.
24.
Teixiera
,
M. C. M.
,
Assuncao
,
E.
, and
Avellar
,
R. G.
,
2003
, “
On Relaxed LMI-Based Designs for Fuzzy Regulators and Fuzzy Observers
,”
IEEE Trans. Fuzzy Syst.
,
11
(
5
), pp.
613
623
.
25.
Tanaka
,
K.
,
Hori
,
T.
, and
Wang
,
H. O.
,
2003
, “
A Multiple Lyapunov Function Approach to Stabilization of Fuzzy Control Systems
,”
IEEE Trans. Fuzzy Syst.
,
11
(
4
), pp.
582
589
.
26.
Rugh
,
W. J.
, and
Shamma
,
J. S.
,
2000
, “
Research on Gain Scheduling
,”
Automatica
,
36
(
10
), pp.
1401
1425
.
27.
Balas
,
G. J.
,
Fialho
,
I.
,
Packard
,
A. K.
,
Renfrow
,
J.
, and
Mullaney
,
C.
,
1997
, “
On the Design of LPV Controllers for the F-14 Aircraft Lateral-Directional Axis During Powered Approach
,”
American Control Conference
, pp.
123
127
.
28.
Apkarian
,
P.
, and
Adams
,
R.
,
1998
, “
Advanced Gain-Scheduling Techniques for Uncertain Systems
,”
IEEE Trans. Control Syst. Technol.
,
6
(
1
), pp.
21
32
.
29.
Wu
,
F.
,
Packard
,
A.
, and
Balas
,
G.
,
2002
, “
Systematic Gain-Scheduling Control Design: A Missile Autopilot Example
,”
Asian J. Control
,
4
(
3
), pp.
341
347
.
30.
Tsourdos
,
A.
,
Economou
,
J. T.
,
White
,
B. A.
, and
Luk
,
P. C. K.
,
2003
, “
Control Design for a Mobile Robot: A Fuzzy LPV Approach
,”
IEEE Conference on Control Applications
, pp.
552
557
.
31.
Huang
,
Y.
,
Sun
,
C.
,
Qian
,
C.
,
Zhang
,
R.
, and
Zhang
,
J.
,
2012
, “
Polytopic LPV Gain-Scheduled Control for a Flexible Air-Breathing Hypersonic Vehicle
,”
31st Chinese Control Conference
, pp.
329
334
.
32.
Precup
,
R. E.
,
Dragos
,
C. A.
,
Preitl
,
S.
,
Radac
,
M. B.
, and
Petriu
,
E. M.
,
2012
, “
Novel Tensor Product Models for Automatic Transmission System Control
,”
IEEE Syst. J.
,
6
(
3
), pp.
488
498
.
33.
Hanifzadegan
,
M.
, and
Nagamune
,
R.
,
2014
, “
Smooth Switching LPV Controller Design for LPV Systems
,”
Automatica
,
50
(
5
), pp.
1481
1488
.
34.
Packard
,
A. K.
,
1994
, “
Gain Scheduling Via Linear Fractional Transformations
,”
Syst. Control Lett.
,
22
(
2
), pp.
79
92
.
35.
Apkarian
,
P.
, and
Gahinet
,
P.
,
1995
, “
A Convex Characterization of Gain-Scheduled H Controllers
,”
IEEE Trans. Autom. Control
,
40
(
5
), pp.
853
864
.
36.
Chilali
,
M.
, and
Gahinet
,
P.
,
1996
, “
H Design With Pole Placement Constraints: An LMI Approach
,”
IEEE Trans. Autom. Control
,
41
(
3
), pp.
358
367
.
You do not currently have access to this content.