This paper addresses the antiwindup problem for linear systems equipped with the zero-phase repetitive controller (ZPRC). The antiwindup compensator is designed using a coprime factorization technique and conditions to characterize the sets of admissible references and disturbances are proposed. A numerical example illustrates the application and potentialities of the proposed methodology.

References

References
1.
Wang
,
Y.
,
Gao
,
F.
, and
Doyle
,
F. J.
, III
,
2009
, “
Survey on Iterative Learning Control, Repetitive Control, and Run-to-Run Control
,”
J. Process Control
,
19
(
10
), pp.
1589
1600
.10.1016/j.jprocont.2009.09.006
2.
Chew
,
K.
, and
Tomizuka
,
M.
,
1990
, “
Digital Control of Repetitive Errors in Disk Drive Systems
,”
IEEE Control Syst. Mag.
,
10
(
1
), pp.
16
20
.10.1109/37.50664
3.
Escobar
,
G.
,
Valdez
,
A. A.
,
Leyva-Ramos
,
J.
, and
Mattavelli
,
P.
,
2007
, “
Repetitive-Based Controller for a UPS Inverter to Compensate Unbalance and Harmonic Distortion
,”
IEEE Trans. Ind. Electron.
,
54
(
1
), pp.
504
510
.10.1109/TIE.2006.888803
4.
Lin
,
C.-Y.
, and
Chang
,
C.-M.
,
2013
, “
Hybrid Proportional Derivative/Repetitive Control for Active Vibration Control of Smart Piezoelectric Structures
,”
J. Vib. Control
,
19
(
7
), pp.
992
1003
.10.1177/1077546312436749
5.
Chang
,
H. L.
, and
Tsao
,
T.-C.
,
2014
, “
High-Sampling Rate Dynamic Inversion—Filter Realization and Applications in Digital Control
,”
IEEE Trans. Mechatronics
,
19
(
1
), pp.
238
248
.10.1109/TMECH.2012.2230184
6.
Tomizuka
,
M.
,
Tsao
,
T. C.
, and
Chew
,
K. K.
,
1989
, “
Analysis and Synthesis of Discrete-Time Repetitive Controller
,”
ASME J. Dyn. Syst. Meas. Control
,
111
(
3
), pp.
353
358
.10.1115/1.3153060
7.
Chew
,
K. K.
, and
Tomizuka
,
M.
,
1990
, “
Steady-State and Stochastic Performance of a Modified Discrete-Time Prototype Repetitive Controller
,”
ASME J. Dyn. Syst. Meas. Control
,
112
(
1
), pp.
35
41
.10.1115/1.2894136
8.
Flores
,
J. V.
,
Gomes Da Silva
, Jr.,
J. M.
,
Pereira
,
L. F. A.
, and
Sbarbaro
,
D.
,
2012
, “
Repetitive Control Design for MIMO Systems With Saturating Actuators
,”
IEEE Trans. Autom. Control
,
57
(
1
), pp.
192
198
.10.1109/TAC.2011.2174829
9.
Ma
,
C. C. H.
,
1990
, “
Stability Robustness of Repetitive Control Systems With Zero Phase Compensation
,”
ASME J. Dyn. Syst. Meas. Control
,
112
(
3
), pp.
320
324
.10.1115/1.2896148
10.
Sbarbaro
,
D.
,
Tomizuka
,
M.
, and
de la Barra
,
B. L.
,
2009
, “
Repetitive Control System Under Actuator Saturation and Windup Prevention
,”
ASME J. Dyn. Syst. Meas. Control
,
131
(
4
), p.
044505
.10.1115/1.3117207
11.
Weston
,
P. F.
, and
Postlethwaite
,
I.
,
2000
, “
Linear Conditioning for Systems Containing Saturating Actuators
,”
Automatica
,
36
(
9
), pp.
1347
1354
.10.1016/S0005-1098(00)00044-3
12.
Turner
,
M.
,
Herrmann
,
G.
, and
Postlethwaite
,
I.
,
2007
, “
Anti-Windup Compensation Using a Decoupling Architecture
,”
Advanced Strategies in Control Systems With Input and Output Constraints
(Lecture Notes in Control and Information Sciences),
S.
Tarbouriech
,
G.
Garcia
, and
A.
Glattfelder
, eds., Vol.
346
,
Springer
,
Berlin
, pp.
121
171
.10.1007/978-3-540-37010-9_5
13.
Chen
,
C.
,
1970
,
Linear System Theory and Design
,
2 ed.
,
Oxford University Press
,
New York
, p.
679
.
14.
Turner
,
M. C.
,
Hermann
,
G.
, and
Postlethwaite
,
I.
,
2003
, “
Discrete-Time Antiwindup: Part 1—Stability and Performance
,”
European Control Conference
, ECC03, pp.
539
544
.
15.
Flores
,
J. V.
,
Gomes Da Silva
, Jr.,
J. M.
, and
Sartori
,
R.
,
2013
, “
Tracking and Rejection of Periodic Signals for Discrete-Time Linear Systems Subject to Control Saturation
,”
IET Control Theory Appl.
,
7
(
3
), pp.
363
371
.10.1049/iet-cta.2012.0864
You do not currently have access to this content.