This paper addresses the antiwindup problem for linear systems equipped with the zero-phase repetitive controller (ZPRC). The antiwindup compensator is designed using a coprime factorization technique and conditions to characterize the sets of admissible references and disturbances are proposed. A numerical example illustrates the application and potentialities of the proposed methodology.
Issue Section:
Technical Brief
References
1.
Wang
, Y.
, Gao
, F.
, and Doyle
, F. J.
, III, 2009
, “Survey on Iterative Learning Control, Repetitive Control, and Run-to-Run Control
,” J. Process Control
, 19
(10
), pp. 1589
–1600
.10.1016/j.jprocont.2009.09.0062.
Chew
, K.
, and Tomizuka
, M.
, 1990
, “Digital Control of Repetitive Errors in Disk Drive Systems
,” IEEE Control Syst. Mag.
, 10
(1
), pp. 16
–20
.10.1109/37.506643.
Escobar
, G.
, Valdez
, A. A.
, Leyva-Ramos
, J.
, and Mattavelli
, P.
, 2007
, “Repetitive-Based Controller for a UPS Inverter to Compensate Unbalance and Harmonic Distortion
,” IEEE Trans. Ind. Electron.
, 54
(1
), pp. 504
–510
.10.1109/TIE.2006.8888034.
Lin
, C.-Y.
, and Chang
, C.-M.
, 2013
, “Hybrid Proportional Derivative/Repetitive Control for Active Vibration Control of Smart Piezoelectric Structures
,” J. Vib. Control
, 19
(7
), pp. 992
–1003
.10.1177/10775463124367495.
Chang
, H. L.
, and Tsao
, T.-C.
, 2014
, “High-Sampling Rate Dynamic Inversion—Filter Realization and Applications in Digital Control
,” IEEE Trans. Mechatronics
, 19
(1
), pp. 238
–248
.10.1109/TMECH.2012.22301846.
Tomizuka
, M.
, Tsao
, T. C.
, and Chew
, K. K.
, 1989
, “Analysis and Synthesis of Discrete-Time Repetitive Controller
,” ASME J. Dyn. Syst. Meas. Control
, 111
(3
), pp. 353
–358
.10.1115/1.31530607.
Chew
, K. K.
, and Tomizuka
, M.
, 1990
, “Steady-State and Stochastic Performance of a Modified Discrete-Time Prototype Repetitive Controller
,” ASME J. Dyn. Syst. Meas. Control
, 112
(1
), pp. 35
–41
.10.1115/1.28941368.
Flores
, J. V.
, Gomes Da Silva
, Jr., J. M.
, Pereira
, L. F. A.
, and Sbarbaro
, D.
, 2012
, “Repetitive Control Design for MIMO Systems With Saturating Actuators
,” IEEE Trans. Autom. Control
, 57
(1
), pp. 192
–198
.10.1109/TAC.2011.21748299.
Ma
, C. C. H.
, 1990
, “Stability Robustness of Repetitive Control Systems With Zero Phase Compensation
,” ASME J. Dyn. Syst. Meas. Control
, 112
(3
), pp. 320
–324
.10.1115/1.289614810.
Sbarbaro
, D.
, Tomizuka
, M.
, and de la Barra
, B. L.
, 2009
, “Repetitive Control System Under Actuator Saturation and Windup Prevention
,” ASME J. Dyn. Syst. Meas. Control
, 131
(4
), p. 044505
.10.1115/1.311720711.
Weston
, P. F.
, and Postlethwaite
, I.
, 2000
, “Linear Conditioning for Systems Containing Saturating Actuators
,” Automatica
, 36
(9
), pp. 1347
–1354
.10.1016/S0005-1098(00)00044-312.
Turner
, M.
, Herrmann
, G.
, and Postlethwaite
, I.
, 2007
, “Anti-Windup Compensation Using a Decoupling Architecture
,” Advanced Strategies in Control Systems With Input and Output Constraints
(Lecture Notes in Control and Information Sciences), S.
Tarbouriech
, G.
Garcia
, and A.
Glattfelder
, eds., Vol. 346
, Springer
, Berlin
, pp. 121
–171
.10.1007/978-3-540-37010-9_513.
Chen
, C.
, 1970
, Linear System Theory and Design
, 2 ed., Oxford University Press
, New York
, p. 679
.14.
Turner
, M. C.
, Hermann
, G.
, and Postlethwaite
, I.
, 2003
, “Discrete-Time Antiwindup: Part 1—Stability and Performance
,” European Control Conference
, ECC03, pp. 539
–544
.15.
Flores
, J. V.
, Gomes Da Silva
, Jr., J. M.
, and Sartori
, R.
, 2013
, “Tracking and Rejection of Periodic Signals for Discrete-Time Linear Systems Subject to Control Saturation
,” IET Control Theory Appl.
, 7
(3
), pp. 363
–371
.10.1049/iet-cta.2012.0864Copyright © 2015 by ASME
You do not currently have access to this content.