Space restrictions prevent surgeons to directly interact with the patient during magnetic resonance imaging (MRI)-guided procedures. One practical solution would be to develop a robotic system that can act as an interface between surgeon and patient during those interventions. The proposed system consists of a commercial PHANTOM device (product of The Sensable Technologies) as the master robot and an MRI-compatible patient-mounted parallel platform (that we name ROBOCATHETER) designed to serve as the slave mechanism inside the scanner bore. As the main contribution of this paper, a linear parameter varying (LPV) gain-scheduling controller is designed and implemented to obtain the desired performance of the slave robot in tracking set points and reference trajectories. To do so, a reduced-order dynamic model of the robot based on the Lagrange method is derived to capture the nonlinear dynamics of the platform. The model is then used for the design of an output-feedback LPV controller to command the robot to position the catheter in any desired states. During the course of control, appropriate selection of scheduling parameters not only helps to compensate for the nonlinearities of the system dynamics but also leads to a set of decoupled models for the system, where each degree-of-freedom (DOF) could be treated separately. The performance of the controller is compared with a variable-gain proportional-derivative-integral (PID) controller. Experimental results show that the proposed control scheme has significant advantages in terms of set point tracking and actuator saturation over the baseline PID controller.

References

References
1.
Gomes
,
P.
,
2011
, “
Surgical Robotics: Reviewing the Past, Analysing the Present, Imagining the Future
,”
Rob. Comput. Integr. Manuf.
,
27
(
2
), pp.
261
266
.10.1016/j.rcim.2010.06.009
2.
Fischer
,
G.
,
Iordachita
,
I.
,
Csoma
,
C.
,
Tokuda
,
J.
,
DiMaio
,
S.
,
Tempany
,
C.
,
Hata
,
N.
, and
Fichtinger
,
G.
,
2008
, “
MRI-Compatible Pneumatic Robot for Transperineal Prostate Needle Placement
,”
IEEE/ASME Trans. Mechatronics
,
13
(
3
), pp.
295
305
.10.1109/TMECH.2008.924044
3.
Horgan
,
S.
,
Vanuno
,
D.
,
Sileri
,
P.
,
Cicalese
,
L.
, and
Benedetti
,
E.
,
2002
, “
Robotic-Assisted Laparoscopic Donor Nephrectomy for Kidney Transplantation
,”
Transplantation
,
73
(
9
), pp.
1474
1479
.10.1097/00007890-200205150-00018
4.
Genden
,
E.
,
Desai
,
S.
, and
Sung
,
C.
,
2009
, “
Transoral Robotic Surgery for the Management of Head and Neck Cancer: A Preliminary Experience
,”
Head Neck
,
31
(
3
), pp.
283
289
.10.1002/hed.20972
5.
Boyd
,
W.
,
Rayman
,
M.
,
Desai
,
N.
,
Menkis
,
A.
,
Dobkowski
,
W.
,
Ganapathy
,
S.
,
Kiaii
,
B.
,
Jablonsky
,
G.
,
McKenzie
,
F.
, and
Novick
,
R.
,
2000
, “
Closed-Chest Coronary Artery Bypass Grafting on the Beating Heart With the Use of a Computer-Enhanced Surgical Robotic System
,”
J. Thorac. Cardiovasc. Surg.
,
120
(
4
), pp.
807
809
.10.1067/mtc.2000.109541
6.
Li
,
M.
,
Kapoor
,
A.
,
Mazilu
,
D.
,
Wood
,
B.
, and
Horvath
,
K.
,
2010
, “
Cardiac Interventions Under MRI Guidance Using Robotic Assistance
,”
IEEE International Conference on Robotics and Automation (ICRA)
, pp.
2574
2579
.
7.
Yeniaras
,
E.
,
Deng
,
Z.
,
Davies
,
M.
,
Syed
,
M.
, and
Tsekos
,
N.
,
2011
, “
A Novel Virtual Reality Environment for Preoperative Planning and Simulation of Image Guided Intracardiac Surgeries With Robotic Manipulators
,”
Stud. Health Technol. Inf.
,
163
, pp.
716
722
.
8.
Abdelaziz
,
S.
,
Esteveny
,
L.
,
Renaud
,
P.
,
Bayle
,
B.
,
Barbé
,
L.
,
De Mathelin
,
M.
, and
Gangi
,
A.
,
2011
, “
Design Considerations for a Novel MRI Compatible Manipulator for Prostate Cryoablation
,”
Int. J. Comput. Assisted Radiol. Surg.
,
6
(
6
), pp.
811
819
.10.1007/s11548-011-0558-4
9.
Salimi
,
A.
,
Ramezanifar
,
A.
,
Mohammadpour
,
J.
,
Grigoriadis
,
K. M.
, and
Tsekos
,
N. V.
,
2014
, “
Design and Qualification of a Parallel Robotic Platform to Assist With Beating-Heart Intracardiac Interventions
,”
ASME J. Mech. Rob.
,
6
(
2
), p.
021004
.10.1115/1.4026334
10.
Rocco
,
P.
,
1996
, “
Stability of PID Control for Industrial Robot Arms
,”
IEEE Trans. Rob. Autom.
,
12
(
4
), pp.
606
614
.10.1109/70.508444
11.
Craig
,
J.
,
2004
,
Introduction to Robotics: Mechanics and Control
,
Prentice Hall
,
Englewood Cliffs, NJ
.
12.
Hester
,
T.
,
Quinlan
,
M.
, and
Stone
,
P.
,
2012
, “
RTMBA: A Real-Time Model-Based Reinforcement Learning Architecture for Robot Control
,”
IEEE International Conference on Robotics and Automation (ICRA)
, pp.
85
90
.
13.
Thumati
,
B.
,
Dierks
,
T.
, and
Sarangapani
,
J.
,
2012
, “
A Model-Based Fault Tolerant Control Design for Nonholonomic Mobile Robots in Formation
,”
J. Def. Model. Simul.
,
9
(
1
), pp.
17
31
.10.1177/1548512910391829
14.
Ramezanifar
,
A.
,
Salimi
,
A.
,
Mohammadpour
,
J.
,
Kilicarslan
,
A.
,
Grigoriadis
,
K.
, and
Tsekos
,
N.
,
2011
, “
Linear Parameter Varying Control of a Robot Manipulator for Aortic Valve Implantation
,”
ASME
Paper No. DSCC2011-6186, pp.
121
127
.10.1115/DSCC2011-6186
15.
Mohammadpour
,
J.
, and
Scherer
,
C.
,
2012
,
Control of Linear Parameter Varying Systems With Applications
,
Springer-Verlag
,
New York
.10.1007/978-1-4614-1833-7
16.
Bianchi
,
F.
,
Mantz
,
R.
, and
Christiansen
,
C.
,
2005
, “
Gain Scheduling Control of Variable-Speed Wind Energy Conversion Systems Using Quasi-LPV Models
,”
Control Eng. Pract.
,
13
(
2
), pp.
247
255
.10.1016/j.conengprac.2004.03.006
17.
Niu
,
B.
, and
Zhang
,
H.
,
2012
, “
Linear Parameter-Varying Modeling for Gain-Scheduling Robust Control Synthesis of Flexible Joint Industrial Robot
,”
Procedia Eng.
,
41
, pp.
838
845
.10.1016/j.proeng.2012.07.252
18.
Salimi
,
A.
,
Ramezanifar
,
A.
,
Mohammadpour
,
J.
, and
Grogoriadis
,
K. M.
,
2013
, “
Development of a Master–Slave Robotic System for MRI-Guided Intracardiac Interventions
,”
ASME Dynamic Systems and Control Conference
,
ASME
Paper No. DSCC2013-3936.10.1115/DSCC2013-3936
19.
Salimi
,
A.
,
Ramezanifar
,
A.
,
Mohammadpour
,
J.
, and
Grigoriadis
,
K.
,
2013
, “
Gain-Scheduling Control of a Cable-Driven MRI-Compatible Robotic Platform for Intracardiac Interventions
,”
American Control Conference (ACC)
, pp.
746
751
.
20.
Merlet
,
J.
,
2006
,
Parallel Robots
,
Springer-Verlag
,
New York
.
21.
Nonami
,
K.
, and
Sivrioglu
,
S.
,
1996
, “
Active Vibration Control Using LMI-Based Mixed H2/H; State and Output Feedback Control With Nonlinearity
,”
Decis. Control
,
1
, pp.
161
166
.
22.
Apkarian
,
P.
, and
Adams
,
R.
,
1998
, “
Advanced Gain-Scheduling Techniques for Uncertain Systems
,”
IEEE Trans. Control Syst. Technol.
,
6
(
1
), pp.
21
32
.10.1109/87.654874
You do not currently have access to this content.