This paper considers the problem of planning paths for a collection of identical vehicles visiting a given set of targets, such that the total lengths of their paths are minimum. Each vehicle starts at a specified location (called a depot) and it is required that each target to be on the path of at least one vehicle. The path of every vehicle must satisfy the motion constraints of every vehicle. In this paper, we develop a method to compute lower bound to the minimum total path lengths by relaxing some of the constraints and posing it as a standard multiple traveling salesmen problem (MTSP). A lower bound is often important to ascertain suboptimality bounds for heuristics and for developing stopping criterion for algorithms computing an optimal solution. Simulation results are presented to show that the proposed method can be used to improve the lower bounds of instances with four vehicles and 40 targets by approximately 39%.

References

1.
Dubins
,
L. E.
,
1957
, “
On Curves of Minimal Length With a Constraint on Average Curvature, and With Prescribed Initial and Terminal Positions and Tangents
,”
Am. J. Math.
,
79
(
3
), pp.
497
516
.10.2307/2372560
2.
Tang
,
Z.
, and
Ozguner
,
U.
,
2005
, “
Motion Planning for Multitarget Surveillance With Mobile Sensor Agents
,”
IEEE Trans. Rob.
,
21
(
5
), pp.
898
908
.10.1109/TRO.2005.847567
3.
Rathinam
,
S.
,
Sengupta
,
R.
, and
Darbha
,
S.
,
2007
, “
Resource Allocation Algorithm for Multivehicle Systems With Nonholonomic Constraints
,”
IEEE Trans. Autom. Sci. Eng.
,
4
(
1
), pp.
98
104
.10.1109/TASE.2006.872110
4.
Malik
,
W.
,
Rathinam
,
S.
,
Darbha
,
S.
, and
Jeffcoat
,
D.
,
2006
, “
Combinatorial Motion Planning of Multiple Vehicle Systems
,”
Proceedings of the 45th IEEE Conference on Decision and Control
, pp.
5299
5304
.
5.
Yadlapalli
,
S.
,
Malik
,
W.
,
Darbha
,
S.
, and
Pachter
,
M.
,
2009
, “
A Lagrangian Based Algorithm for a Multiple Depot, Multiple Traveling Salesman Problem
,”
Nonlinear Anal.: Real World Appl.
,
10
(
4
), pp.
1990
1999
.10.1016/j.nonrwa.2008.03.014
6.
Rathinam
,
S.
, and
Sengupta
,
R.
,
2006
, “
Lower and Upper Bounds for a Multiple Depot UAV Routing Problem
,”
Proceedings of the Conference on Decision and Control
, pp.
5287
5292
.
7.
Oberlin
,
P.
,
Rathinam
,
S.
, and
Darbha
,
S.
,
2010
, “
Today's Traveling Salesman Problem
,”
IEEE Rob. Autom. Mag.
,
17
(
4
), pp.
70
77
.10.1109/MRA.2010.938844
8.
Le Ny
,
J.
,
Feron
,
E.
, and
Frazzoli
,
E.
,
2012
, “
On the Dubins Traveling Salesman Problem
,”
IEEE Trans. Autom. Control
,
57
(
1
), pp.
265
270
.
9.
Levin
,
A.
, and
Yovel
,
U.
,
2012
, “
Local Search Algorithms for Multiple-Depot Vehicle Routing and for Multiple Traveling Salesman Problems With Proved Performance Guarantees
,”
J. Comb. Optim.
,
28
(
4
), pp.
726
747
.10.1007/s10878-012-9580-x
10.
Oh
,
H.
,
Kim
,
S.
,
Tsourdos
,
A.
, and
White
,
B.
,
2011
, “
Cooperative Road-Network Search Planning of Multiple UAVs Using Dubins Paths
,”
AIAA
Paper No. 2011-6386.10.2514/6.2011-6386
11.
Sujit
,
P.
,
George
,
J.
, and
Beard
,
R.
,
2008
, “
Multiple UAV Task Allocation Using Particle Swarm Optimization
,”
AIAA
Paper No. 2008-6837.10.2514/6.2008-6837
12.
Held
,
M.
, and
Karp
,
R. M.
,
1970
, “
The Traveling-Salesman Problem and Minimum Spanning Trees
,”
Oper. Res.
,
18
(
6
), pp.
1138
1162
.10.1287/opre.18.6.1138
13.
Helsgaun
,
K.
,
2000
, “
An Effective Implementation of the Lin-Kernighan Traveling Salesman Heuristic
,”
Eur. J. Oper. Res.
,
126
(
1
), pp.
106
130
.10.1016/S0377-2217(99)00284-2
14.
Benavent
,
E.
, and
Martínez
,
A.
,
2013
, “
Multi-Depot Multiple TSP: A Polyhedral Study and Computational Results
,”
Ann. Oper. Res.
,
207
(
1
), pp.
7
25
.10.1007/s10479-011-1024-y
15.
Manyam
,
S.
,
Rathinam
,
S.
,
Darbha
,
S.
, and
Obermeyer
,
K.
,
2012
, “
Computation of a Lower Bound for a Vehicle Routing Problem With Motion Constraints
,”
ASME
Paper No. DSCC2012-MOVIC2012-8713.10.1115/DSCC2012-MOVIC2012-8713
16.
Oberlin
,
P.
,
Rathinam
,
S.
, and
Darbha
,
S.
,
2009
, “
A Transformation for a Multiple Depot, Multiple Traveling Salesman Problem
,”
Proceedings of the American Control Conference
, pp.
2636
2641
.
17.
Fisher
,
M. L.
,
2004
, “
The Lagrangian Relaxation Method for Solving Integer Programming Problems
,”
Manage. Sci.
,
50
(
Suppl. 12
), pp.
1861
1871
.10.1287/mnsc.1040.0263
18.
Nemhauser
,
G.
, and
Wolsey
,
L.
,
1988
,
Integer and Combinatorial Optimization
,
Wiley-Interscience Publication
, Hoboken, NJ.
19.
Noon
,
C. E.
, and
Bean
,
J. C.
,
1993
, “
An Efficient Transformation of the Generalized Traveling Salesman Problem
,”
INFOR
,
31
(
1
), pp.
39
44
.
You do not currently have access to this content.