The support vector domain description (SVDD) is an efficient kernel method inspired from the SV machine (SVM) by Vapnik. It is commonly used for one-classification problems or novelty detection. The training algorithm solves a constrained convex quadratic programming (QP) problem. This assumes prior dense sampling (offline training) and it requires large memory and enormous amounts of training time. In this paper, we propose a fast SVDD dedicated for multiclassification problems. The proposed classifier deals with stationary as well as nonstationary (NS) data. The principle is based on the dynamic removal/insertion of informations according to adequate rules. To ensure the rapidity of convergence, the algorithm considers in each run a limited frame of samples for the training process. These samples are selected according to some approximations based on Karush–Kuhn–Tucker (KKT) conditions. An additional merge mechanism is proposed to avoid local optima drawbacks and improve performances. The developed method is assessed on some synthetic data to prove its effectiveness. Afterward, it is employed to solve a diagnosis problem and faults detection. We considered for this purpose a real industrial plant consisting in Tennessee Eastman process (TEP).

References

1.
Tax
,
D.
, and
Duin
,
R.
,
1999
, “
Support Vector Domain Description
,”
Pattern Recognit. Lett.
,
20
(11--13), pp.
1191
1199
.10.1016/S0167-8655(99)00087-2
2.
Tax
,
D.
, and
Duin
,
R.
,
2004
, “
Support Vector Data Description
,”
Mach. Learn.
,
54
(
1
), pp.
45
66
.10.1023/B:MACH.0000008084.60811.49
3.
Hua
,
X.
, and
Ding
,
S.
,
2011
, “
Incremental Learning Algorithm for Support Vector Data Description
,”
J. Software
,
6
(
7
), pp.
1166
1173
.10.4304/jsw.6.7.1166-1173
4.
Tavakkoli
,
A.
,
Nicolescu
,
M.
, and
Bebis
,
G.
,
2008
, “
Incremental SVDD Training: Improving Efficiency of Background Modeling in Videos
,”
International Conference on Signal and Image Processing
,
Kailua-Kona, HI
, pp.
1
6
.
5.
Osuna
,
E.
,
Freund
,
R.
, and
Girosi
,
F.
,
1997
, “
Improved Training Algorithm for Support Vector Machines
,”
Neural Networks in Signal Processing
(
IEEE NNSP'97
),
Amelia Island
, FL, Sep. 24–26, pp.
276
285
.10.1109/NNSP.1997.622408
6.
Jianhua
,
X.
,
2010
, “
Constructing a Fast Algorithm for Multi-Label Classification With Support Vector Data Description
,”
2010 IEEE International Conference on Granular Computing
(
GRC’10
), IEEE Computer Society,
Washington, DC
, pp.
817
821
.10.1109/GrC.2010.107
7.
Vapnik
,
V. N.
,
1998
,
Statistical Learning Theory
,
Wiley
,
New York
.
8.
Camci
,
F.
, and
Chinnam
,
R. B.
,
2008
, “
General Support Vector Representation Machine for One-Class Classification of Non-Stationary Classes
,”
Pattern Recognit.
,
41
(
10
), pp.
3021
3034
.10.1016/j.patcog.2008.04.001
9.
Cortes
,
C.
, and
Vapnik
,
V.
,
1995
, “
Support Vector Network
,”
Mach. Learn.
,
20
(
3
), pp.
273
297
.10.1023/A:1022627411411
10.
Friedman
,
J.
,
1996
, “
Another Approach to Polychotomous Classification
,” Technical Report, Department of Statistics, Stanford University, Stanford, CA.
11.
Platt
,
J. C.
,
Cristianini
,
N.
, and
Shawe-Taylor
,
J.
,
2000
, “
Large Margin DAGs for Multiclass Classification
,”
Neural Information Processing Systems Conference
, Vol.
12
, pp.
547
553
.
12.
Sachs
,
A.
,
Thiel
,
C.
, and
Schwenker
,
F.
,
2006
, “
One-Class Support-Vector Machines for the Classification of Bioacoustic Time Series
,”
Int. J. Artif. Intell. Mach. Learn.
,
6
(
4
), pp.
29
34
.10.1.1.124.7127
13.
Amadou
,
B. H.
,
Lecoeuche
,
S.
, and
Maouche
,
S.
,
2005
, “
AUDyC Neural Network Using a New Gaussian Densities Merge Mechanism
,”
7th International Conference on Adaptive and Natural Computing Algorithms
(
ICANNGA'05
), Coimbra, Portugal, pp.
155
158
.10.1007/3-211-27389-1_37
14.
Downs
,
J. J.
, and
Vogel
,
E. F.
,
1993
, “
A Plant-Wide Industrial Process Control Problem
,”
Comput. Chem. Eng.
,
17
(
3
), pp.
245
255
.10.1016/0098-1354(93)80018-I
15.
Kano
,
M.
,
Nagao
,
K.
,
Hasebe
,
S.
,
Hashimoto
,
I.
,
Ohno
,
H.
,
Strauss
,
R.
, and
Bakshi
,
B.
,
2002
, “
Comparison of Multivariate Statistical Process Monitoring Methods With Applications to the Eastman Challenge Problem
,”
Comput. Chem. Eng.
,
26
(
2
), pp.
161
174
.10.1016/S0098-1354(01)00738-4
16.
Lee
,
J.-M.
,
Yoo
,
C.
, and
Lee
,
I.-B.
,
2004
, “
Statistical Monitoring of Dynamic Processes Based on Dynamic Independent Component Analysis
,”
Chem. Eng. Sci.
,
59
(
14
), pp.
2995
3006
.10.1016/j.ces.2004.04.031
17.
Kruger
,
U.
,
Zhou
,
Y.
, and
Irwin
,
G.
,
2004
, “
Improved Principal Component Monitoring of Large-Scale Processes
,”
J. Process Control
,
14
(
8
), pp.
879
888
.10.1016/j.jprocont.2004.02.002
18.
Xu
,
Y.
,
Ye
,
L.-L.
, and
Zhu
,
Q.-X.
,
2015
, “
A New DROS-Extreme Learning Machine With Differential Vector-KPCA Approach for Real-Time Fault Recognition of Nonlinear Processes
,”
ASME J. Dyn. Syst. Meas. Control
,
137
(
5
), p.
051011
.10.1115/1.4028716
19.
Lyman
,
P.
, and
Georgakis
,
C.
,
1995
, “
Plant-Wide Control of the Tennessee Eastman Problem
,”
Comput. Chem. Eng.
,
19
(
3
), pp.
321
331
.10.1016/0098-1354(94)00057-U
20.
Verron
,
S.
,
Tiplica
,
T.
, and
Kobi
,
A.
,
2008
, “
Fault Detection and Identification With a New Feature Selection Based on Mutual Information
,”
J. Process Control
,
18
(
5
), pp.
479
490
.10.1016/j.jprocont.2007.08.003
21.
Diehl
,
C. P.
,
2003
, “
SVM Incremental Learning, Adaptation and Optimization
,”
International Joint Conference on Neural Networks
, Vol.
4
, pp.
2685
2690
.10.1109/IJCNN.2003.1223991
22.
Ge
,
Z. Q.
,
Yang
,
C. J.
, and
Song
,
Z. H.
,
2009
, “
Improved Kernel PCA-Based Monitoring Approach for Nonlinear Processes
,”
Chem. Eng. Sci.
,
64
(
9
), pp.
2245
2255
.10.1016/j.ces.2009.01.050
23.
Zhang
,
R.
,
Wang
,
W. J.
, and
Ma
,
Y. C.
,
2010
, “
Approximations of the Standard Principal Components Analysis and Kernel PCA
,”
Expert Syst. Appl.
,
37
(
9
), pp.
6531
6537
.10.1016/j.eswa.2010.02.133
24.
Chen
,
J.
, and
Liu
,
K.-C.
,
2002
, “
On-Line Batch Process Monitoring Using Dynamic PCA and Dynamic PLS Models
,”
Chem. Eng. Sci.
,
57
(
1
), pp.
63
75
.10.1016/S0009-2509(01)00366-9
25.
Li
,
S.
, and
Elbestawi
,
M. A.
,
2007
, “
Tool Condition Monitoring in Machining by Fuzzy Neural Networks
,”
ASME J. Dyn. Syst., Meas., Control
,
188
(
4
), pp.
665
672
.10.1115/1.2802341
26.
Michael
,
D.-J.
, Jr.
,
William
,
H. W.
, and
Marion
,
R. R.
,
2008
, “
A One-Sided MEWMA Chart for Health Surveillance
,”
Qual. Reliab. Eng. Int.
,
24
(
5
), pp.
503
518
.10.1002/qre.910
27.
Bersimis
,
S.
,
Psarakis
,
S.
, and
Panaretos
,
J.
,
2007
, “
Multivariate Statistical Process Control Charts: An Overview
,”
Qual. Reliab. Eng. Int.
,
23
(
5
), pp.
517
543
.10.1002/qre.829
28.
Zhang
,
G.
,
Li
,
N.
, and
Li
,
S.
,
2011
, “
A Modified Multivariate EWMA Control Chart for Monitoring Process Small Shifts
,”
International Conference on Modeling, Identification and Control
,
Shanghai, China
, pp.
26
29
.
You do not currently have access to this content.