This paper focuses on robot control problems where energy regeneration is an explicit consideration, and it proposes a methodology for modeling and control design of regenerative motion control systems. The generic model consists of a robotic manipulator where some joints are actively controlled and the remaining joints are energetically self-contained and semi-actively controlled. The model can capture various electromechanical and hydraulic actuator configurations for industrial robots and powered human-assist devices. The basic control approach consists of three steps. First, a virtual control design is conducted by any suitable means. Then, virtual control inputs are enacted by a matching law for the adjustable parameters of the semi-active joints. Finally, the energy storage dynamics are adjusted using design parameters and an optional outer supervisory loop. The method has several attractive features: design simplicity, amenability to simultaneous plant and control design optimization, explicit treatment of energy regeneration, and applicability to multiple domains. This paper emphasizes electromechanical robots whose semi-active joints use ultracapacitors as the single energy storage medium. An internal energy balance equation and associated ideal self-powered operation (ISPO) condition are given for the semi-active joints. This condition is a structural characteristic of the system and independent of the control law. Extensions to handle higher-order dynamics are presented. Also, it is shown that discrepancies between virtual and actual controls can be mapped to parametric uncertainty in the virtual design. Experimental results confirm the validity of the approach.

References

References
1.
Karnopp
,
D.
,
Margolis
,
D.
, and
Rosenberg
,
R.
,
2012
,
System Dynamics: Modeling, Simulation, and Control of Mechatronic Systems
,
5th ed.
,
Wiley
,
Hoboken, NJ
.10.1002/9781118152812
2.
Hunter
,
B.
,
1981
, “
Design of a Self-Contained Active, Regenerative, Computer-Controlled Above-Knee Prosthesis
,” Master's thesis, Massachusetts Institute of Technology, Cambridge, MA.
3.
Seth
,
B.
,
1987
, “
Energy Regeneration and Its Application to Active Above-Knee Prostheses
,” Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA.
4.
Tabor
,
K.
,
1988
, “
The Real-Time Digital Control of a Regenerative Above-Knee Prosthesis
,” Master’s thesis, Massachusetts Institute of Technology, Cambridge, MA.
5.
Tucker
,
M.
, and
Fite
,
K.
,
2010
, “
Mechanical Damping With Electrical Regeneration for a Powered Transfemoral Prosthesis
,”
IEEE/ASME
International Conference on Advanced Intelligent Mechatronics
,
Montreal, QC, Canada
, July 6–9, pp.
13
18
.10.1109/AIM.2010.5695828
6.
Blumentritt
,
S.
,
Scherer
,
H.
,
Michael
,
J.
, and
Schmalz
,
T.
,
1998
, “
Transfemoral Amputees Walking on a Rotary Hydraulic Prosthetic Knee Mechanism: A Preliminary Report
,”
J. Prosthet. Orthotics
,
10
(
3
), pp.
61
70
.10.1097/00008526-199801030-00005
7.
van den Bogert
,
A.
,
Samorezov
,
S.
,
Davis
,
B.
, and
Smith
,
W.
,
2012
, “
Modeling and Optimal Control of an Energy-Storing Prosthetic Knee
,”
ASME J. Biomech. Eng.
,
134
(
5
), p.
051007
.10.1115/1.4006680
8.
Hitt
,
J.
,
Sugar
,
T.
,
Holgate
,
M.
,
Bellman
,
R.
, and
Hollander
,
K.
,
2009
, “
Robotic Transtibial Prosthesis With Biomechanical Energy Regeneration
,”
Ind. Rob.
,
36
(
5
), pp.
441
447
.10.1108/01439910910980169
9.
Martinez-Villalpando
,
E.
, and
Herr
,
H.
,
2009
, “
Agonist–Antagonist Active Knee Prosthesis: A Preliminary Study in Level-Ground Walking
,”
J. Rehab. Res. Dev.
,
46
(
3
), pp.
361
373
.10.1682/JRRD.2008.09.0131
10.
Rankis
,
I.
,
Meike
,
D.
, and
Senfelds
,
A.
,
2013
, “
Utilization of Regeneration Energy in Industrial Robots System
,”
Power Electr. Eng.
,
31
, pp.
95
100
.
11.
Ho
,
H.
, and
Ahn
,
K.
,
2012
, “
Design and Control of a Closed-Loop Hydraulic Energy-Regenerative System
,”
Autom. Constr.
,
22
, pp.
444
458
.10.1016/j.autcon.2011.11.004
12.
Seth
,
B.
, and
Flowers
,
W.
,
1990
, “
Generalized Actuator Concept for the Study of the Efficiency of Energetic Systems
,”
ASME J. Dyn. Syst. Meas. Control
,
112
(
2
), pp.
233
238
.10.1115/1.2896130
13.
Nakano
,
K.
,
Suda
,
Y.
, and
Nakadai
,
S.
,
2003
, “
Self-Powered Active Vibration Control Using a Single Electric Actuator
,”
J. Sound Vib.
,
260
(
2
), pp.
213
235
.10.1016/S0022-460X(02)00980-X
14.
Izumi
,
T.
,
2000
, “
Energy Saving Manipulator by Regenerating Conservative Energy
,”
Advanced Motion Control Symposium
,
Nagoya, Japan
, Apr. 1, pp.
630
635
.10.1109/AMC.2000.862954
15.
Izumi
,
T.
,
Boyagoda
,
P.
,
Nakaoka
,
M.
, and
Hiraki
,
E.
,
1995
, “
Optimal Control of a Servo System Regenerating Conservative Energy to a Condenser
,” Proceedings of the
IEEE/IAS
Conference on Industrial Automation and Control: Emerging Technologies
,
Taipei, Taiwan
, May 22–27, pp.
651
656
.10.1109/IACET.1995.527636
16.
Conway
,
B.
,
1999
,
Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications
,
Springer
, New York.10.1007/978-1-4757-3058-6
17.
Shimizu
,
T.
, and
Underwood
,
C.
,
2013
, “
Super-Capacitor Energy Storage for Micro-Satellites: Feasibility and Potential Mission Applications
,”
Acta Astronaut.
,
85
, pp.
138
154
.10.1016/j.actaastro.2012.12.005
18.
Vinot
,
E.
, and
Trigui
,
R.
,
2013
, “
Optimal Energy Management of HEVs With Hybrid Storage System
,”
Energy Conv. Manage.
,
76
, pp.
437
452
.10.1016/j.enconman.2013.07.065
19.
Naayagi
,
R.
, and
Forsyth
,
A.
,
2010
, “
Bidirectional DC–DC Converter for Aircraft Electric Energy Storage Systems
,”
IET Conference on Power Electronics, Machines, and Drives (PEMD 2010)
,
Brighton, UK
, pp.
1
6
.
20.
Grbovic
,
P.
,
Delarue
,
P.
,
Le Moigne
,
P.
, and
Bartholomeus
,
P.
,
2011
, “
Modeling and Control of the Ultracapacitor-Based Regenerative Controlled Electric Drives
,”
IEEE Trans. Ind. Electron.
,
58
(
8
), pp.
3471
3484
.10.1109/TIE.2010.2087290
21.
Hredzak
,
B.
,
Agelidis
,
V.
, and
Demetriades
,
G.
,
2014
, “
A Low Complexity Control System for a Hybrid DC Power Source Based on Ultracapacitor-Lead Acid Battery Configuration
,”
IEEE Trans. Power Electron.
,
29
(
6
), pp.
2882
2891
.10.1109/TPEL.2013.2277518
22.
Kuperman
,
A.
,
Aharon
,
I.
,
Malki
,
S.
, and
Kara
,
A.
,
2013
, “
Design of a Semiactive Battery-Ultracapacitor Hybrid Energy Source
,”
IEEE Trans. Power Electron.
,
28
(
2
), pp.
806
815
.10.1109/TPEL.2012.2203361
23.
Kannappan
,
S.
,
Kaliyappan
,
K.
,
Manian
,
R. K.
,
Pandian
,
A. S.
,
Yang
,
H.
,
Lee
,
Y. S.
,
Jang
,
J.-H.
, and
Lu
,
W.
,
2014
, “
Graphene Based Supercapacitors With Improved Specific Capacitance and Fast Charging Time at High Current Density
,” arXiv:1311.1548 [cond-mat.mtrl-sci].
24.
Vael
,
G.
,
Achten
,
P.
, and
Zhao
,
F.
,
2004
, “
The Innas Hydraulic Transformer: The Key to the Hydrostatic Common Pressure Rail
,” Marcel Dekker, New York.
25.
Spong
,
M.
,
Hutchinson
,
S.
, and
Vidyasagar
,
M.
,
2006
,
Robot Modeling and Control
,
Wiley
,
Hoboken, NJ
.
26.
Khalil
,
H.
,
2001
,
Nonlinear Systems
,
Prentice-Hall
,
Upper Saddle River, NJ
.
27.
Swaroop
,
D.
,
Hedrick
,
J. K.
,
Yip
,
P. P.
, and
Gerdes
,
J. C.
,
2000
, “
Dynamic Surface Control for a Class of Nonlinear Systems
,”
IEEE Trans. Autom. Control
,
45
(
10
), pp.
1893
1899
.10.1109/TAC.2000.880994
28.
Johansen
,
T.
, and
Fossen
,
T.
,
2013
, “
Control Allocation: A Survey
,”
Automatica
,
49
(
5
), pp.
1087
1103
.10.1016/j.automatica.2013.01.035
29.
Gawthrop
,
P.
,
Wagg
,
D.
,
Neild
,
S.
, and
Wang
,
L.
,
2013
, “
Power-Constrained Intermittent Control
,”
Int. J. Control
,
86
(
3
), pp.
396
409
.10.1080/00207179.2012.733888
30.
Brown
,
K.
,
1994
, “
Design and Analysis of Robots That Perform Dynamic Tasks Using Internal Body Motion
,” Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA.
31.
Seok
,
S.
,
Wang
,
A.
,
Otten
,
D.
, and
Kim
,
S.
,
2012
, “
Actuator Design for High Force Proprioceptive Control in Fast Legged Locomotion
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
), Vilamoura, Oct. 7–12, pp.
1970
1975
.10.1109/IROS.2012.6386252
32.
Anderson
,
F.
, and
Pandy
,
M.
,
2001
, “
Dynamic Optimization of Human Walking
,”
ASME J. Biomech. Eng.
,
123
(
5
), pp.
381
390
.10.1115/1.1392310
33.
Erdemir
,
A.
,
McLean
,
S.
,
Herzog
,
W.
, and
van den Bogert
,
A.
,
2007
, “
Model-Based Estimation of Muscle Forces Exerted During Movements
,”
Clin. Biomech.
,
22
(
2
), pp.
131
154
.10.1016/j.clinbiomech.2006.09.005
34.
Lewis
,
F.
,
Dawson
,
D.
, and
Abdallah
,
C.
,
2003
, “
Robot Manipulator Control: Theory and Practice
,”
Automation and Control Engineering
,
Taylor & Francis
,
New York
.10.1201/9780203026953
35.
Francis
,
B.
, and
Wonham
,
W.
,
1975
, “
The Internal Model Principle for Linear Multivariable Regulators
,”
Appl. Math. Optim.
,
2
(
2
), pp.
170
194
.10.1007/BF01447855
36.
Richter
,
H.
,
Simon
,
D.
, and
van den Bogert
,
A.
,
2014
, “
Semiactive Virtual Control Method for Robots With Regenerative Energy-Storing Joints
,”
Proceedings of the 19th IFAC World Congress
, Cape Town, South Africa, pp.
10244
10250
.
37.
Corke
,
P.
, and
Armstrong-Helouvry
,
B.
,
1994
, “
A Search for Consensus Among Model Parameters Reported for the PUMA 560 Robot
,”
IEEE International Conference on Robotics and Automation
,
San Diego, CA
, pp.
1608
1613
.
38.
Winter
,
D.
,
1983
, “
Energy Generation and Absorption at the Ankle and Knee During Fast, Natural, and Slow Cadences
,”
Clin. Orthop. Relat. Res.
,
175
, pp.
147
154
.10.1097/00003086-198305000-00021
39.
Hogan
,
N.
,
1985
, “
Impedance Control: An Approach to Manipulation: Part II—Implementation
,”
ASME J. Dyn. Syst. Meas. Control
,
107
(
1
), pp.
8
16
.10.1115/1.3140713
40.
Richter
,
H.
, and
Selvaraj
,
D.
,
2015
, “
Impedance Control With Energy Regeneration in Advanced Exercise Machines
,”
American Control Conference
,
Chicago, IL
.
You do not currently have access to this content.