This paper presents an eigenvalue assignment method for the time-delay systems with feedback controllers. A new form of Runge–Kutta algorithm, generalized from the classical fourth-order Runge–Kutta method, is utilized to stabilize the linear delay differential equation (DDE) with a single delay. Pole placement of the DDEs is achieved by assigning the eigenvalue with maximal modulus of the Floquet transition matrix obtained via the generalized Runge–Kutta method (GRKM). The stabilization of the DDEs with feedback controllers is studied from the viewpoint of optimization, i.e., the DDEs are controlled through optimizing the feedback gain matrices with proper optimization techniques. Several numerical cases are provided to illustrate the feasibility of the proposed method for control of linear time-invariant delayed systems as well as periodic-coefficient ones. The proposed method is verified with high computational accuracy and efficiency through comparing with other methods such as the Lambert W function and the semidiscretization method (SDM).

References

References
1.
Richard
,
J.-P.
,
2003
, “
Time-Delay Systems: An Overview of Some Recent Advances and Open Problems
,”
Automatica
,
39
(
10
), pp.
1667
1694
.10.1016/S0005-1098(03)00167-5
2.
Niculescu
,
S.-I.
,
2001
,
Delay Effects on Stability: A Robust Control Approach
,
Springer
,
Berlin
.
3.
Kuang
,
Y.
,
1993
,
Delay Differential Equations: With Applications in Population Dynamics
,
Academic Press
,
London
.
4.
Foryś
,
U.
,
2004
, “
Biological Delay Systems and the Mikhailov Criterion of Stability
,”
J. Biol. Syst.
,
12
(
1
), pp.
45
60
.10.1142/S0218339004001014
5.
Silva
,
G. J.
,
Datta
,
A.
, and
Bhattacharyya
,
S.
, “
Controller Design Via Padé Approximation Can Lead to Instability
,” 40th
IEEE
Conference on the Decision and Control
, Orlando, FL, pp.
4733
4737
.10.1109/CDC.2001.980953
6.
Manitius
,
A.
, and
Olbrot
,
A.
,
1979
, “
Finite Spectrum Assignment Problem for Systems With Delays
,”
IEEE Trans. Autom. Control
,
24
(
4
), pp.
541
552
.10.1109/TAC.1979.1102124
7.
Smith
,
O. J.
,
1957
, “
Posicast Control of Damped Oscillatory Systems
,”
Proc. IRE
,
45
(
9
), pp.
1249
1255
.10.1109/JRPROC.1957.278530
8.
Smith
,
O. J.
,
1959
, “
A Controller to Overcome Dead Time
,”
ISA J.
,
6
(
2
), pp.
28
33
.
9.
Sánchez-Peña
,
R. S.
,
Bolea
,
Y.
, and
Puig
,
V.
,
2009
, “
MIMO Smith Predictor: Global and Structured Robust Performance Analysis
,”
J. Process Control
,
19
(
1
), pp.
163
177
.10.1016/j.jprocont.2007.12.004
10.
Fliess
,
M.
,
Marquez
,
R.
, and
Mounier
,
H.
,
2002
, “
An Extension of Predictive Control, PID Regulators and Smith Predictors to Some Linear Delay Systems
,”
Int. J. Control
,
75
(
10
), pp.
728
743
.10.1080/00207170210140852
11.
Krasovskiĭ
,
N. N.
,
1963
,
Stability of Motion: Applications of Lyapunov's Second Method to Differential Systems and Equations With Delay
,
Stanford University Press
,
Stanford, CA
.
12.
Kolmanovskiĭ
,
V. B.
,
1986
,
Stability of Functional Differential Equations
,
Academic Press
,
London
.
13.
Gu
,
K.
,
2001
, “
Discretization Schemes for Lyapunov–Krasovskii Functionals in Time-Delay Systems
,”
Kybernetika
,
37
(
4
), pp.
479
504
.
14.
Niu
,
Y.
,
Lam
,
J.
, and
Wang
,
X.
, “
Sliding-Mode Control for Uncertain Neutral Delay Systems
,”
IEE
Proceedings–Control Theory and Applications, IET,
151
(1), pp.
38
44
.10.1049/ip-cta:20040009
15.
Fattouh
,
A.
,
Sename
,
O.
, and
Dion
,
J.-M.
, “
A LMI Approach to Robust Observer Design for Linear Time-Delay Systems
,” 39th
IEEE
Conference on Decision and Control
, Sydney, Australia, Dec. 12–15, pp.
1495
1500
.10.1109/CDC.2000.912070
16.
Sakthivel
,
R.
,
Vadivel
,
P.
,
Mathiyalagan
,
K.
, and
Arunkumar
,
A.
,
2014
, “
Fault-Distribution Dependent Reliable H∞ Control for Takagi–Sugeno Fuzzy Systems
,”
ASME J. Dyn. Syst., Meas., Control
,
136
(
2
), p.
021021
.10.1115/1.4025987
17.
Sakthivel
,
R.
,
Mathiyalagan
,
K.
, and
Anthoni
,
S. M.
,
2012
, “
Robust H∞ Control for Uncertain Discrete-Time Stochastic Neural Networks With Time-Varying Delays
,”
IET Control Theory Appl.
,
6
(
9
), pp.
1220
1228
.10.1049/iet-cta.2011.0254
18.
Mathiyalagan
,
K.
,
Sakthivel
,
R.
, and
Anthoni
,
S. M.
,
2011
, “
New Stability and Stabilization Criteria for Fuzzy Neural Networks With Various Activation Functions
,”
Phys. Scr.
,
84
(
1
), p.
015007
.10.1088/0031-8949/84/01/015007
19.
Vadivel
,
P.
,
Sakthivel
,
R.
,
Mathiyalagan
,
K.
, and
Thangaraj
,
P.
,
2012
, “
Robust Stabilisation of Non-Linear Uncertain Takagi–Sugeno Fuzzy Systems by H∞ Control
,”
IET Control Theory Appl.
,
6
(
16
), pp.
2556
2566
.10.1049/iet-cta.2012.0626
20.
Sakthivel
,
R.
,
Raja
,
U. K.
,
Mathiyalagan
,
K.
, and
Leelamani
,
A.
,
2012
, “
Design of a Robust Controller on Stabilization of Stochastic Neural Networks With Time Varying Delays
,”
Phys. Scr.
,
85
(
3
), p.
035003
.10.1088/0031-8949/85/03/035003
21.
Sakthivel
,
R.
,
Mathiyalagan
,
K.
, and
Anthoni
,
S. M.
,
2012
, “
Robust Stability and Control for Uncertain Neutral Time Delay Systems
,”
Int. J. Control
,
85
(
4
), pp.
373
383
.10.1080/00207179.2011.653832
22.
Zhang
,
J.
,
Knopse
,
C. R.
, and
Tsiotras
,
P.
,
2001
, “
Stability of Time-Delay Systems: Equivalence Between Lyapunov and Scaled Small-Gain Conditions
,”
IEEE Trans. Autom. Control
,
46
(
3
), pp.
482
486
.10.1109/9.911428
23.
Michiels
,
W.
,
Engelborghs
,
K.
,
Vansevenant
,
P.
, and
Roose
,
D.
,
2002
, “
Continuous Pole Placement for Delay Equations
,”
Automatica
,
38
(
5
), pp.
747
761
.10.1016/S0005-1098(01)00257-6
24.
Burke
,
J. V.
,
Lewis
,
A. S.
, and
Overton
,
M. L.
,
2005
, “
A Robust Gradient Sampling Algorithm for Nonsmooth, Nonconvex Optimization
,”
SIAM J. Optim.
,
15
(
3
), pp.
751
779
.10.1137/030601296
25.
Cai
,
G.
, and
Huang
,
J.
,
2002
, “
Optimal Control Method for Seismically Excited Building Structures With Time-Delay in Control
,”
J. Eng. Mech.
,
128
(
6
), pp.
602
612
.10.1061/(ASCE)0733-9399(2002)128:6(602)
26.
Cai
,
G.-P.
,
Huang
,
J.-Z.
, and
Yang
,
S. X.
,
2003
, “
An Optimal Control Method for Linear Systems With Time Delay
,”
Comput. Struct.
,
81
(
15
), pp.
1539
1546
.10.1016/S0045-7949(03)00146-9
27.
Olgac
,
N.
, and
Sipahi
,
R.
,
2002
, “
An Exact Method for the Stability Analysis of Time-Delayed Linear Time-Invariant (LTI) Systems
,”
IEEE Trans. Autom. Control
,
47
(
5
), pp.
793
797
.10.1109/TAC.2002.1000275
28.
Sipahi
,
R.
, and
Olgac
,
N.
,
2003
, “
Active Vibration Suppression With Time Delayed Feedback
,”
ASME J. Vib. Acoust.
,
125
(
3
), pp.
384
388
.10.1115/1.1569942
29.
Breda
,
D.
,
Maset
,
S.
, and
Vermiglio
,
R.
,
2005
, “
Pseudospectral Differencing Methods for Characteristic Roots of Delay Differential Equations
,”
SIAM J. Sci. Comput.
,
27
(
2
), pp.
482
495
.10.1137/030601600
30.
Stépán
,
G.
,
1989
,
Retarded Dynamical Systems: Stability and Characteristic Functions
,
Longman Scientific & Technical Marlow
,
New York
.
31.
Insperger
,
T.
, and
Stepan
,
G.
,
2002
, “
Semi-Discretization Method for Delayed Systems
,”
Int. J. Numer. Methods Eng.
,
55
(
5
), pp.
503
518
.10.1002/nme.505
32.
Insperger
,
T.
, and
Stépán
,
G.
,
2004
, “
Updated Semi-Discretization Method for Periodic Delay-Differential Equations With Discrete Delay
,”
Int. J. Numer. Methods Eng.
,
61
(
1
), pp.
117
141
.10.1002/nme.1061
33.
Sheng
,
J.
,
Elbeyli
,
O.
, and
Sun
,
J.
,
2004
, “
Stability and Optimal Feedback Controls for Time-Delayed Linear Periodic Systems
,”
AIAA J.
,
42
(
5
), pp.
908
911
.10.2514/1.9586
34.
Sheng
,
J.
, and
Sun
,
J.
,
2005
, “
Feedback Controls and Optimal Gain Design of Delayed Periodic Linear Systems
,”
J. Vib. Control
,
11
(
2
), pp.
277
294
.10.1177/107754605040947
35.
Stépán
,
G.
, and
Insperger
,
T.
,
2006
, “
Stability of Time-Periodic and Delayed Systems—A Route to Act-and-Wait Control
,”
Annu. Rev. Control
,
30
(
2
), pp.
159
168
.10.1016/j.arcontrol.2006.08.002
36.
Sun
,
J.-Q.
, and
Song
,
B.
,
2009
, “
Control Studies of Time-Delayed Dynamical Systems With the Method of Continuous Time Approximation
,”
Commun. Nonlinear Sci. Numer. Simul.
,
14
(
11
), pp.
3933
3944
.10.1016/j.cnsns.2009.02.011
37.
Song
,
B.
, and
Sun
,
J.-Q.
,
2010
, “
Supervisory Control of Dynamical Systems With Uncertain Time Delays
,”
ASME J. Vib. Acoust.
,
132
(
6
), p.
061003
.10.1115/1.4001846
38.
Corless
,
R. M.
,
Gonnet
,
G. H.
,
Hare
,
D. E.
,
Jeffrey
,
D. J.
, and
Knuth
,
D. E.
,
1996
, “
On the LambertW function
,”
Adv. Comput. Math.
,
5
(
1
), pp.
329
359
.10.1007/BF02124750
39.
Asl
,
F. M.
, and
Ulsoy
,
A. G.
,
2003
, “
Analysis of a System of Linear Delay Differential Equations
,”
ASME J. Dyn. Syst., Meas., Control
,
125
(
2
), pp.
215
223
.10.1115/1.1568121
40.
Yi
,
S.
,
Nelson
,
P.
, and
Ulsoy
,
A.
,
2007
, “
Survey on Analysis of Time Delayed Systems Via the Lambert W Function
,”
Adv. Dyn. Syst.
,
14
(
S2
), pp.
296
301
.
41.
Yi
,
S.
,
Nelson
,
P.
, and
Ulsoy
,
A.
,
2010
, “
Eigenvalue Assignment Via the Lambert W Function for Control of Time-Delay Systems
,”
J. Vib. Control
,
16
(
7–8
), pp.
961
982
.10.1177/1077546309341102
42.
Wang
,
Z.
, and
Hu
,
H.
,
2008
, “
Calculation of the Rightmost Characteristic Root of Retarded Time-Delay Systems Via Lambert W Function
,”
J. Sound Vib.
,
318
(
4
), pp.
757
767
.10.1016/j.jsv.2008.04.052
43.
Yi
,
S.
,
Nelson
,
P. W.
, and
Ulsoy
,
A. G.
,
2010
,
Time-Delay Systems: Analysis and Control Using the Lambert W Function
,
World Scientific
,
Singapore
.10.1142/9789814307406
44.
Niu
,
J.
,
Ding
,
Y.
,
Zhu
,
L.
, and
Ding
,
H.
,
2014
, “
Runge–Kutta Methods for a Semi-Analytical Prediction of Milling Stability
,”
Nonlinear Dyn.
,
76
(
1
), pp.
289
304
.10.1007/s11071-013-1127-x
45.
Berrut
,
J.-P.
, and
Trefethen
,
L. N.
,
2004
, “
Barycentric Lagrange Interpolation
,”
SIAM Rev.
,
46
(
3
), pp.
501
517
.10.1137/S0036144502417715
46.
Schmitt
,
L. M.
,
2001
, “
Theory of Genetic Algorithms
,”
Theor. Comput. Sci.
,
259
(
1
), pp.
1
61
.10.1016/S0304-3975(00)00406-0
47.
Yang
,
W. Y.
,
Cao
,
W.
,
Chung
,
T.-S.
, and
Morris
,
J.
,
2005
,
Applied Numerical Methods Using MATLAB
,
Wiley
,
Hoboken, NJ
.10.1002/0471705195
48.
Yi
,
S.
,
Nelson
,
P. W.
, and
Ulsoy
,
A. G.
, “
Robust Control and Time-Domain Specifications for Systems of Delay Differential Equations Via Eigenvalue Assignment
,”
American Control Conference
, Seattle, WA, pp.
4928
4933
.
49.
Yi
,
S.
,
Nelson
,
P. W.
, and
Ulsoy
,
A. G.
, “
Analysis and Control of Time Delayed Systems Via the Lambert W Function
,”
17th IFAC World Congress 2008
, pp.
13414
13419
.
50.
Insperger
,
T.
, and
Stepan
,
G.
,
2003
, “
Stability of the Damped Mathieu Equation With Time Delay
,”
ASME J. Dyn. Syst., Meas., Control
,
125
(
2
), pp.
166
171
.10.1115/1.1567314
You do not currently have access to this content.