In this paper, a control scheme is designed for stable haptic teleoperation of hydraulic manipulators. The controller results in a stable position tracking for the hydraulic actuator (slave) in both unconstrained and constrained motions. The force feedback at the haptic (master) side is a combination of two different sensations. For free motion, the haptic device provides a haptic force based on the position error between the displacements of the master and the slave. The force also serves to alert the operator when the slave is ahead or behind in position tracking of the master. Once the slave comes in contact with the environment, the haptic force is augmented by the interaction force. The uniqueness, continuation, and existence of the Filippov solution to this system with the discontinuity surfaces are proven first. The extension of Lyapunov's stability theory to nonsmooth systems is then employed to prove the stability by constructing a Lyapunov function. The effectiveness of the controller is validated via experimental studies. It is shown that while stable, the system performs well in terms of position tracking of the hydraulic actuator and providing a haptic feel to the operator. The measurements required by the controller are supply pressure, actuator's line pressures, interaction force, and displacements of the master and slave.

References

1.
Kontz
,
M. E.
,
Herrera
,
M. C.
,
Huggins
,
J. D.
, and
Book
,
W. J.
,
2007
, “
Impedance Shaping for Improved Feel in Hydraulic Systems
,”
ASME
Paper No. IMECE2007-41712.10.1115/IMECE2007-41712
2.
Kontz
,
M. E.
, and
Book
,
W. J.
,
2003
, “
Position/Rate Haptic Control of a Hydraulic Forklift
,”
ASME
Paper No. IMECE2003-55051.10.1115/IMECE2003-55051
3.
Hokayem
,
P. F.
, and
Spong
,
M. W.
,
2006
, “
Bilateral Teleoperation: An Historical Survey
,”
Automatica
,
42
(
12
), pp.
2035
2057
.10.1016/j.automatica.2006.06.027
4.
Zareinia
,
K.
,
Sepehri
,
N.
, and
Wu
,
Q.
,
2012
, “
A Lyapunov Controller for Stable Haptic Manipulation of Hydraulic Actuators
,”
Int. J. Robust Nonlinear Control
,
22
(
3
), pp.
241
261
.10.1002/rnc.1680
5.
Heinrichs
,
B.
,
Sepehri
,
N.
, and
Thornton-Trump
,
A.
,
1997
, “
Position-Based Impedance Control of an Industrial Hydraulic Manipulator
,”
IEEE Control Syst. Mag.
,
17
(
1
), pp.
46
52
.10.1109/37.569715
6.
Merritt
,
H. E.
,
1967
,
Hydraulic Control Systems
,
Wiley
,
New York
.
7.
Kontz
,
M. E.
,
Beckwith
,
J.
, and
Book
,
W. J.
,
2005
, “
Evaluation of a Teleoperated Haptic Forklift
,”
IEEE/ASME
International Conference on Advanced Intelligent Mechatronics
, pp.
295
300
.10.1109/AIM.2005.1501006
8.
Parker
,
N. R.
,
Salcudean
,
S. E.
, and
Lawrence
,
P. D.
,
1993
, “
Application of Force Feedback to Heavy Duty Hydraulic Machines
,”
IEEE
International Conference on Robotics and Automation
, Atlanta, GA, May 2–6, pp.
375
381
.10.1109/ROBOT.1993.292010
9.
Lawrence
,
P. D.
,
Salcudean
,
S. E.
,
Sepehri
,
N.
,
Chan
,
D.
,
Bachmann
,
S.
,
Parker
,
N.
,
Zhu
,
M.
, and
Frenette
,
R.
,
1997
, “
Coordinated and Force-Feedback Control of Hydraulic Excavators
,”
4th International Symposium
(
Experimental Robotics IV
),
Springer-Verlag
,
Berlin
, pp.
181
194
.10.1007/BFb0035209
10.
Zareinia
,
K.
,
Yazdanpanah
,
G. A.
,
Sepehri
,
N.
, and
Fung
,
W.
,
2009
, “
Experimental Evaluation of Bilateral Control Schemes Applied to Hydraulic Actuators: A Comparative Study
,”
Trans. Can. Soc. Mech. Eng.
,
33
(
3
), pp.
377
398
.
11.
Milecki
,
A.
,
2008
, “
Simulation Investigations of Electrohydraulic Drive Controlled by Haptic Joystick
,”
Arch. Technol. Masz. Automatyzacji
,
28
(
4
), pp.
53
61
.
12.
Milecki
,
A.
,
2013
, “
Haptic Joystick in Admittance Control of Electrohydraulic Drive
,”
Arch. Mech. Technol. Autom.
,
33
(
3
), pp.
23
32
.
13.
Elton
,
M. D.
, and
Book
,
W. J.
,
2011
, “
Comparison of Human-Machine Interfaces Designed for Novices Teleoperating Multi-DOF Hydraulic Manipulators
,”
RO-MAN
, IEEE, Atlanta, GA, July 31–Aug. 3, pp.
395
400
.10.1109/ROMAN.2011.6005250
14.
Kim
,
D.
,
Oh
,
K. W.
,
Lee
,
C. S.
, and
Hong
,
D.
,
2013
, “
Novel Design of Haptic Devices for Bilateral Teleoperated Excavators Using the Wave-Variable Method
,”
Int. J. Precis. Eng. Manuf.
,
14
(
2
), pp.
223
230
.10.1007/s12541-013-0031-0
15.
Li
,
P. Y.
,
2000
, “
Towards Safe and Human Friendly Hydraulics: The Passive Valve
,”
ASME J. Dyn. Syst., Meas. Control
,
122
(3), pp.
402
409
.10.1115/1.1286680
16.
Li
,
P. Y.
, and
Krishnaswamy
,
K.
,
2004
, “
Passive Bilateral Teleoperation of a Hydraulic Actuator Using an Electrohydraulic Passive Valve
,”
Int. J. Fluid Power
,
5
(
2
), pp.
43
55
.10.1080/14399776.2004.10781191
17.
Krishnaswamy
,
K.
, and
Li
,
P. Y.
,
2006
, “
Bond Graph Based Approach to Passive Teleoperation of a Hydraulic Backhoe
,”
ASME J. Dyn. Syst., Meas., Control
,
128
(
1
), pp.
176
185
.10.1115/1.2168475
18.
Durbha
,
V.
, and
Li
,
P.
,
2012
, “
A Nonlinear Spring Model of Hydraulic Actuator for Passive Controller Design in Bilateral Tele-Operation
,”
American Control Conference
(
ACC
), IEEE, Montreal, Canada, June 27–29, pp.
3471
3476
.10.1109/ACC.2012.6315243
19.
Zareinia
,
K.
, and
Sepehri
,
N.
,
2011
, “
Position-Mode Haptic-Based Control of Teleoperated Hydraulic Actuators
,”
ASME
Paper No. DSCC2011-6139.10.1115/DSCC2011-6139
20.
Zareinia
,
K.
, and
Sepehri
,
N.
,
2012
, “
Lyapunov Stable Displacement-Mode Haptic Manipulation of Hydraulic Actuators: Theory and Experiment
,”
Int. J. Control
,
85
(
9
), pp.
1313
1326
.10.1080/00207179.2012.683811
21.
Filippov
,
A. F.
,
1960
, “
Differential Equations With Discontinuous Right-Hand Side
,”
Math. Sbornik
,
51
, pp.
99
128
, [Amer. Math. Soc. Translation, Series 2, 42, pp. 199–231 (1964)].
22.
Filippov
,
A. F.
,
1980
, “
Differential Equations With Second Members Discontinuous on Intersecting Surfaces
,”
Differential'nye Uravneniya
,
15
, p.
1814
[Differ. Equations, 15, pp. 1292–1299 (1980)]
23.
Alleyne
,
A.
, and
Liu
,
R.
,
2000
, “
A Simplified Approach to Force Control for Electro-Hydraulic Systems
,”
Control Eng. Pract.
,
8
(
12
), pp.
1347
1356
.10.1016/S0967-0661(00)00081-2
24.
Sirouspour
,
M. R.
, and
Salcudean
,
S. E.
,
2001
, “
Nonlinear Control of Hydraulic Robots
,”
IEEE Trans. Rob. Autom.
,
17
(
2
), pp.
173
182
.10.1109/70.928562
25.
Massie
,
T. H.
, and
Salisbury
,
K. J.
,
1994
, “
PHANToM Haptic Interface: A Device for Probing Virtual Objects
,”
International Mechanical Engineering Congress and Exposition
, pp.
295
299
.
26.
Yokokohji
,
Y.
,
1994
, “
Bilateral Control of Master-Slave Manipulators for Ideal Kinesthetic Coupling-Formulation and Experiment
,”
IEEE Trans. Rob. Autom.
,
10
(
5
), pp.
605
620
.10.1109/70.326566
27.
Aliaga
,
I.
,
Rubio
,
A.
, and
Sanchez
,
E.
,
2004
, “
Experimental Quantitative Comparison of Different Control Architectures for Master-Slave Teleoperation
,”
IEEE Trans. Control Syst. Technol.
,
12
(
1
), pp.
2
11
.10.1109/TCST.2003.819586
28.
Abdossalami
,
A.
, and
Sirouspour
,
S.
,
2009
, “
Adaptive Control for Improved Transparency in Haptic Simulations
,”
IEEE Trans. Haptics
,
2
(
1
), pp.
2
14
.10.1109/TOH.2008.18
29.
Niksefat
,
N.
,
Sepehri
,
N.
, and
Wu
,
Q.
,
2007
, “
Design and Experimental Evaluation of a QFT Contact Task Controller for Electro-Hydraulic Actuators
,”
Int. J. Rob. Nonlinear Control
,
17
(
2–3
), pp.
225
250
.10.1002/rnc.1108
30.
Chinniah
,
Y.
,
Burton
,
R.
,
Habibi
,
S.
, and
Sampson
,
E.
,
2008
, “
Identification of the Nonlinear Friction Characteristics in a Hydraulic Actuator Using the Extended Kalman Filter
,”
Trans. Can. Soc. Mech. Eng.
,
32
(2), pp.
121
136
.
31.
Alleyne
,
A. G.
, and
Liu
,
R.
,
2000
, “
Systematic Control of a Class of Nonlinear Systems With Application to Electrohydraulic Cylinder Pressure Control
,”
IEEE Trans. Control Syst. Technol.
,
8
(
4
), pp.
623
634
.10.1109/87.852908
32.
Sekhavat
,
P.
,
Wu
,
Q.
, and
Sepehri
,
N.
,
2005
, “
Impact Control in Hydraulic Actuators
,”
ASME J. Dyn. Syst., Meas. Control
,
127
(
2
), pp.
197
205
.10.1115/1.1898231
33.
Liu
,
R.
, and
Alleyne
,
A.
,
2000
, “
Nonlinear Force/Pressure Tracking of an Electrohydraulic Actuator
,”
ASME J. Dyn. Syst., Meas. Control
,
122
(
1
), pp.
232
237
.10.1115/1.482466
34.
Jerouane
,
M.
,
Sepehri
,
N.
, and
Lamnabhi-Lagarrigue
,
F.
,
2004
, “
Dynamic Analysis of Variable Structure Force Control of Hydraulic Actuators Via the Reaching Law Approach
,”
Int. J. Control
,
77
(
14
), pp.
1260
1268
.10.1080/00207170412331305579
35.
Marton
,
L.
,
Fodor
,
S.
, and
Sepehri
,
N.
,
2011
, “
A Practical Method for Friction Identification in Hydraulic Actuators
,”
Mechatronics
,
21
(
1
), pp.
350
356
.10.1016/j.mechatronics.2010.08.010
36.
Niksefat
,
N.
,
Wu
,
Q.
, and
Sepehri
,
N.
,
2001
, “
Design of a Lyapunov Controller for an Electro-Hydraulic Actuator During Contact Tasks
,”
ASME J. Dyn. Syst., Meas. Control
,
123
(
2
), pp.
299
307
.10.1115/1.1367271
37.
Lawrence
,
D. A.
,
1993
, “
Stability and Transparency in Bilateral Teleoperation
,”
IEEE Trans. Rob. Autom.
,
9
(
5
), pp.
624
637
.10.1109/70.258054
38.
Wu
,
Q.
,
Onyshko
,
S.
,
Sepehri
,
N.
, and
Thornton-Trump
,
A.
,
1998
, “
On Construction of Smooth Lyapunov Functions for Non-Smooth Systems
,”
Int. J. Control
,
69
(
9
), pp.
443
457
.10.1080/002071798222758
39.
Wu
,
Q.
, and
Sepehri
,
N.
,
2001
, “
On Lyapunov's Stability Analysis of Non-Smooth Systems With Applications to Control Engineering
,”
Int. J. Non-Linear Mech.
,
36
(
7
), pp.
1153
1161
.10.1016/S0020-7462(00)00086-X
40.
Shevitz
,
D.
, and
Paden
,
B.
,
1994
, “
Lyapunov Stability Theory of Nonsmooth Systems
,”
IEEE Trans. Autom. Control
,
39
(
9
), pp.
1910
1914
.10.1109/9.317122
41.
Slotine
,
J. J.
, and
Li
,
W.
,
1991
,
Applied Nonlinear Control
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
You do not currently have access to this content.