This paper presents procedural guidelines for the construction of discontinuous state feedback controllers for driftless, kinematic nonholonomic systems, with extensions to a class of dynamic nonholonomic systems with drift. Given an n-dimensional kinematic nonholonomic system subject to κ Pfaffian constraints, system states are partitioned into “leafwise” and “transverse,” based on the structure of the Pfaffian constraint matrix. A reference vector field F is defined as a function of the leafwise states only in a way that it is nonsingular everywhere except for a submanifold containing the origin. The induced decomposition of the configuration space, together with requiring the system vector field to be aligned with F, suggests choices for Lyapunov-like functions. The proposed approach recasts the original nonholonomic control problem as an output regulation problem, which although nontrivial, may admit solutions based on standard tools.

References

References
1.
Pomet
,
J.-B.
,
1992
, “
Explicit Design of Time-Varying Stabilizing Control Laws for a Class of Controllable Systems Without Drift
,”
Syst. Control Lett.
,
18
(
2
), pp.
147
158
.10.1016/0167-6911(92)90019-O
2.
Teel
,
A. R.
,
Murray
,
R. M.
, and
Walsh
,
G. C.
,
1992
, “
Nonholonomic Control Systems: From Steering to Stabilization With Sinusoids
,” 31st
IEEE
Conference on Decision and Control
, Tucson, AZ, pp.
1603
1609
.10.1109/CDC.1992.371456
3.
Samson
,
C.
,
1995
, “
Control of Chained Systems: Application to Path Following and Time-Varying Point-Stabilization of Mobile Robots
,”
IEEE Trans. Autom. Control
,
40
(
1
), pp.
64
77
.10.1109/9.362899
4.
Jiang
,
Z.-P.
,
1999
, “
A Unified Lyapunov Framework for Stabilization and Tracking of Nonholonomic Systems
,” 38th
IEEE
Conference on Decision and Control
, Phoenix, AZ, pp.
2088
2093
.10.1109/CDC.1999.831227
5.
Tian
,
Y.-P.
, and
Li
,
S.
,
2002
, “
Exponential Stabilization of Nonholonomic Dynamic Systems by Smooth Time-Varying Control
,”
Automatica
,
38
(
7
), pp.
1138
1143
.10.1016/S0005-1098(01)00303-X
6.
Morin
,
P.
, and
Samson
,
C.
,
2003
, “
Practical Stabilization of Driftless Systems on Lie Groups: The Transverse Function Approach
,”
IEEE Trans. Autom. Control
,
48
(
9
), pp.
1496
1508
.10.1109/TAC.2003.816963
7.
Morin
,
P.
, and
Samson
,
C.
,
2009
, “
Control of Nonholonomic Mobile Robots Based on the Transverse Function Approach
,”
IEEE Trans. Rob.
,
25
(
5
), pp.
1058
1073
.10.1109/TRO.2009.2014123
8.
Sørdalen
,
O. J.
, and
Egeland
,
O.
,
1995
, “
Exponential Stabilization of Nonholonomic Chained Systems
,”
IEEE Trans. Autom. Control
,
40
(
1
), pp.
35
48
.10.1109/9.362901
9.
Morin
,
P.
, and
Samson
,
C.
,
1996
, “
Time-Varying Exponential Stabilization of Chained Form Systems Based on a Backstepping Technique
,” 35th
IEEE
Conference on Decision and Control
, Kobe, Japan, Dec. 11–13, pp.
1449
1454
.10.1109/CDC.1996.572717
10.
Godhavn
,
J.-M.
, and
Egeland
,
O.
,
1997
, “
A Lyapunov Approach to Exponential Stabilization of Nonholonomic Systems in Power Form
,”
IEEE Trans. Autom. Control
,
42
(
7
), pp.
1028
1032
.10.1109/9.599989
11.
M'Closkey
,
R. T.
, and
Murray
,
R. M.
,
1997
, “
Exponential Stabilization of Driftless Nonlinear Control Systems Using Homogeneous Feedback
,”
IEEE Trans. Autom. Control
,
42
(
5
), pp.
614
628
.10.1109/9.580865
12.
Morin
,
P.
, and
Samson
,
C.
,
2000
, “
Control of Nonlinear Chained Systems: From the Routh–Hurwitz Stability Criterion to Time-Varying Exponential Stabilizers
,”
IEEE Trans. Autom. Control
,
45
(
1
), pp.
141
146
.10.1109/9.827372
13.
Oriolo
,
G.
, and
Vendittelli
,
M.
,
2005
, “
A Framework for the Stabilization of General Nonholonomic Systems With an Application to the Plate-Ball Mechanism
,”
IEEE Trans. Rob.
,
21
(
2
), pp.
162
175
.10.1109/TRO.2004.839231
14.
Bloch
,
A. M.
,
Reyhanoglu
,
M.
, and
McClamroch
,
N. H.
,
1992
, “
Control and Stabilization of Nonholonomic Dynamic Systems
,”
IEEE Trans. Autom. Control
,
37
(
11
), pp.
1746
1757
.10.1109/9.173144
15.
Canudas de Wit
,
C.
, and
Sørdalen
,
O. J.
,
1992
, “
Exponential Stabilization of Mobile Robots With Nonholonomic Constraints
,”
IEEE Trans. Autom. Control
,
37
(
11
), pp.
1791
1797
.10.1109/9.173153
16.
Astolfi
,
A.
,
1996
, “
Discontinuous Control of Nonholonomic Systems
,”
Syst. Control Lett.
,
27
(
1
), pp.
37
45
.10.1016/0167-6911(95)00041-0
17.
Bloch
,
A.
, and
Dragunov
,
S.
,
1996
, “
Stabilization and Tracking in the Nonholonomic Integrator Via Sliding Modes
,”
Syst. Control Lett.
,
29
(
1
), pp.
91
99
.10.1016/S0167-6911(96)00049-7
18.
Tayebi
,
A.
,
Tadjine
,
M.
, and
Rachid
,
A.
,
1997
, “
Invariant Manifold Approach for the Stabilization of Nonholonomic Systems in Chained Form: Application to a Car-Like Mobile Robot
,”
36th IEEE Conference on Decision and Control
, pp.
4038
4043
.
19.
Tayebi
,
A.
,
Tadjine
,
M.
, and
Rachid
,
A.
,
1997
, “
Discontinuous Control Design for the Stabilization of Nonholonomic Systems in Chained Form Using the Backstepping Approach
,”
36th IEEE Conference on Decision and Control
, pp.
3089
3090
.
20.
Bloch
,
A.
,
Dragunov
,
S.
, and
Kinyon
,
M.
,
1998
, “
Nonholonomic Stabilization and Isospectral Flows
,” 37th
IEEE
Conference on Decision and Control
, Tampa, FL, Dec. 16–18, pp.
3581
3586
.10.1109/CDC.1998.761735
21.
Luo
,
J.
, and
Tsiotras
,
P.
,
1998
, “
Exponentially Convergent Control Laws for Nonholonomic Systems in Power Form
,”
Syst. Control Lett.
,
35
(
2
), pp.
87
95
.10.1016/S0167-6911(98)00039-5
22.
Wang
,
S. Y.
,
Huo
,
W.
, and
Xu
,
W. L.
,
1999
, “
Order-Reduced Stabilization Design of Nonholonomic Chained Systems Based on New Canonical Forms
,”
38th IEEE Conference on Decision and Control
, pp.
3464
3469
.
23.
Xu
,
W. L.
, and
Ma
,
B. L.
,
2001
, “
Stabilization of Second-Order Nonholonomic Systems in Canonical Chained Form
,”
Rob. Auton. Syst.
,
34
(
4
), pp.
223
233
.10.1016/S0921-8890(00)00123-8
24.
Marchand
,
N.
, and
Alamir
,
M.
,
2003
, “
Discontinuous Exponential Stabilization of Chained Form Systems
,”
Automatica
,
39
(
2
), pp.
343
348
.10.1016/S0005-1098(02)00229-7
25.
Lucibello
,
P.
, and
Oriolo
,
G.
,
1996
, “
Stabilization Via Iterative State Steering With Application to Chained-Form Systems
,” 35th
IEEE
Conference on Decision and Control
, pp.
2614
2619
.10.1109/CDC.1996.573496
26.
Kolmanovsky
,
I.
,
Reyhanoglu
,
M.
, and
McClamroch
,
N. H.
,
1996
, “
Switched Mode Feedback Control Laws for Nonholonomic Systems in Extended Power Form
,”
Syst. Control Lett.
,
27
(
1
), pp.
29
36
.10.1016/0167-6911(95)00036-4
27.
Kolmanovsky
,
I.
, and
McClamroch
,
N. H.
,
1996
, “
Hybrid Feedback Laws for a Class of Cascade Nonlinear Control Systems
,”
IEEE Trans. Autom. Control
,
41
(
9
), pp.
1271
1282
.10.1109/9.536497
28.
Hespanha
,
J. P.
, and
Morse
,
A. S.
,
1999
, “
Stabilization of Non-Holonomic Integrators Via Logic-Based Switching
,”
Automatica
,
35
(
3
), pp.
385
393
.10.1016/S0005-1098(98)00166-6
29.
Sun
,
Z.
,
Ge
,
S.
,
Huo
,
W.
, and
Lee
,
T.
,
2001
, “
Stabilization of Nonholonomic Chained Systems Via Nonregular Feedback Linearization
,”
Syst. Control Lett.
,
44
(
4
), pp.
279
289
.10.1016/S0167-6911(01)00148-7
30.
Casagrande
,
D.
,
Astolfi
,
A.
, and
Parisini
,
T.
,
2005
, “
Control of Nonholonomic Systems: A Simple Stabilizing Time-Switching Strategy
,” 16th IFAC World Congress.
31.
Henle
,
M.
,
1994
,
A Combinatorial Introduction to Topology
,
Dover Publications
, New York.
32.
Isidori
,
A.
,
1995
,
Nonlinear Control Systems
,
3rd ed.
,
Springer Verlag
, London.10.1007/978-1-84628-615-5
33.
Panagou
,
D.
,
Tanner
,
H. G.
, and
Kyriakopoulos
,
K. J.
,
2011
, “
Control of Nonholonomic Systems Using Reference Vector Fields
,” 50th
IEEE
Conference on Decision and Control and European Control Conference
, Orlando, FL, Dec. 12–15, pp.
2831
2836
.10.1109/CDC.2011.6160922
34.
Panagou
,
D.
, and
Kyriakopoulos
,
K. J.
,
2011
, “
Control of Underactuated Systems With Viability Constraints
,” 50th
IEEE
Conference on Decision and Control and European Control Conference
, Orlando, FL, Dec. 12–15, pp.
5497
5502
.10.1109/CDC.2011.6160925
35.
Griffiths
,
D. J.
,
1999
,
Introduction to Electrodynamics
,
3rd ed.
,
Prentice Hall
,
Upper Saddle River, NJ
.
36.
Panagou
,
D.
,
Tanner
,
H. G.
, and
Kyriakopoulos
,
K. J.
,
2010
, “
Dipole-Like Fields for Stabilization of Systems With Pfaffian Constraints
,” 2010
IEEE
International Conference on Robotics and Automation
, Orlando, FL, Dec. 12–15, pp.
4499
4504
.10.1109/ROBOT.2010.5509296
37.
LaValle
,
S. M.
,
2006
,
Planning Algorithms
,
Cambridge University Press
, New York.10.1017/CBO9780511546877
38.
Shevitz
,
D.
, and
Paden
,
B.
,
1993
, “
Lyapunov Stability Theory of Nonsmooth Systems
,” 32nd
IEEE
Conference on Decision and Control
, pp.
416
421
.10.1109/CDC.1993.325114
39.
Fossen
,
T. I.
,
2002
,
Marine Control Systems: Guidance, Navigation and Control of Ships, Rigs and Underwater Vehicles
,
Marine Cybernetics
, Trondheim, Norway.
40.
Khalil
,
H. K.
,
2002
,
Nonlinear Systems
,
3rd ed.
,
Prentice-Hall
, NJ.
41.
Tanner
,
H. G.
,
2004
, “
ISS Properties of Nonholonomic Vehicles
,”
Syst. Control Lett.
,
53
(
3–4
), pp.
229
235
.10.1016/j.sysconle.2004.05.001
42.
Heemels
,
W.
, and
Weiland
,
S.
,
2007
, “
On Interconnections of Discontinuous Dynamical Systems: An Input-to-State Stability Approach
,”
46th Conference on Decision and Control
, New Orleans, LA, Dec. 12–14, pp.
109
114
.10.1109/CDC.2007.4434742
43.
Wang
,
W.
, and
Clark
,
C. M.
,
2006
, “
Modeling and Simulation of the VideoRay Pro III Underwater Vehicle
,”
OCEANS'06 IEEE
—Asia Pacific, Singapore, May 16–19.10.1109/OCEANSAP.2006.4393862
You do not currently have access to this content.