Many of today's robot applications depend on wireless communications, whose performance can impact the whole system. To support analysis of feedback control through limited channels, we develop describing functions (DFs) for three variations on the series interconnection of a quantizer, a binary erasure channel, and decoder for a single input single output (SISO) system. The key steps in our derivation hold when the decoder is a linear-quadratic-Gaussian (LQG)-type control, a zero-output decoder, or a hold-output decoder. We confirm the accuracy of the new formulas and provide an example showing limit cycle behavior.

References

References
1.
Tsumura
,
K.
,
Ishii
,
H.
, and
Hoshina
,
H.
,
2009
, “
Tradeoffs Between Quantization and Packet Loss in Networked Control of Linear Systems
,”
Automatica
,
45
(
1
), pp.
2963
2970
.10.1016/j.automatica.2009.09.030
2.
Niu
,
Y.
,
Jia
,
T.
,
Wang
,
X.
, and
Yang
,
F.
,
2009
, “
Output Feedback Control Design for NCSs Subject to Quantization and Dropout
,”
Inf. Sci.
,
179
(
1
), pp.
3804
3813
.10.1016/j.ins.2009.07.006
3.
Dai
,
J.
,
2010
, “
A Delay System Approach to Networked Control Systems With Limited Communication Capacity
,”
J. Franklin Inst.
,
347
(
1
), pp.
1334
1352
.10.1016/j.jfranklin.2010.06.007
4.
Liu
,
M.
,
Wang
,
Q.
, and
Li
,
H.
,
2011
, “
State Estimation and Stabilization for Nonlinear Networked Control Systems With Limited Capacity Channel
,”
J. Franklin Inst.
,
348
(
1
), pp.
1869
1885
.10.1016/j.jfranklin.2011.05.008
5.
Yang
,
R.
,
Shi
,
P.
,
Liu
,
G.
, and
Gao
,
H.
,
2011
, “
Network-Based Feedback Control for Systems With Mixed Delays Based on Quantization and Dropout Compensation
,”
Automatica
,
47
(
12
), pp.
2805
2809
.10.1016/j.automatica.2011.09.007
6.
Rasool
,
F.
, and
Nguang
,
S.
,
2010
, “
Quantised Robust H Infinity Output Feedback Control of Discrete-Time Systems With Random Communication Delays
,”
IET Control Theory Appl.
,
4
(
11
), pp.
2252
2262
.10.1049/iet-cta.2009.0222
7.
Jiang
,
C.
, and
Cai
,
M.
,
2011
, “
H Infinity Control of Networked Control Systems With State Quantisation
,”
Int. J. Syst. Sci.
,
42
(
6
), pp. 959–966.
8.
Gao
,
H.
, and
Chen
,
T.
,
2008
, “
A New Approach to Quantized Feedback Control Systems
,”
Automatica
,
44
(
2
), pp.
534
542
.10.1016/j.automatica.2007.06.015
9.
Seiler
,
P.
, and
Sengupta
,
R.
,
2005
, “
An H Infinity Approach to Networked Control
,”
IEEE Trans. Autom. Control
,
50
(
3
), pp.
356
364
.10.1109/TAC.2005.844177
10.
Zhang
,
L.
,
Gao
,
H.
, and
Kaynak
,
O.
,
2013
, “
Network Induced Constraints in Networked Control Systems—A Survey
,”
IEEE Trans. Ind. Inf.
,
9
(
1
), pp.
403
416
.10.1109/TII.2012.2219540
11.
Guckenheimer
,
J.
, and
Holmes
,
P.
,
1990
,
Nonlinear Oscillations Dynamical Systems and Bifurcations
(Applied Mathematical Sciences), Vol.
42
,
Springer-Verlag
, New York.
12.
Mallet-Paret
,
J.
, and
Smith
,
H.
,
1989
, “
The Poincare-Bendixson Theorem for Monotone Cyclic Feedback Systems
,”
J. Dyn. Differ. Equations
,
2
(
4
), pp.
367
422
.
13.
Basiri
,
M.
,
Bishop
,
A.
, and
Jensfelt
,
P.
,
2010
, “
Distributed Control of Triangular Formations With Angle Only Constraints
,”
Syst. Control Lett.
,
59
(
2
), pp.
147
154
.10.1016/j.sysconle.2009.12.010
14.
Wang
,
W.
, and
Slotine
,
J.-J.
,
2004
, “
On Partial Contraction Analysis for Coupled Nonlinear Oscillators
,”
Biol. Cybern.
,
92
(
1
), pp.
38
53
.10.1007/s00422-004-0527-x
15.
Gelb
,
A.
, and
Velde
,
W. V.
,
1968
,
Multiple-Input Describing Functions and Nonlinear System Design
,
McGraw-Hill Inc.
, New York.
16.
Sanders
,
S.
,
1993
, “
On Limit Cycles and the Describing Function Method in Periodically Switched Circuits
,”
IEEE Trans. Circuits Syst.-I: Fundam. Theory Appl.
,
40
(
9
), pp.
564
573
.10.1109/81.244905
17.
Peterchev
,
A.
, and
Sanders
,
S.
,
2003
, “
Quantization Resolution and Limit Cycling in Digitally Controlled PWM Converters
,”
IEEE Trans. Power Electron.
,
18
(
1
), pp.
301
309
.10.1109/TPEL.2002.807092
18.
Kim
,
E.
,
Lee
,
H.
, and
Park
,
M.
,
2000
, “
Limit-Cycle Prediction of a Fuzzy Control System Based on Describing Function Method
,”
IEEE Trans. Fuzzy Syst.
,
8
(
1
), pp.
11
23
.
19.
Kim
,
M.-S.
, and
Chung
,
S.-C.
,
2006
, “
Friction Identification of Ball-Screw Driven Servomechanisms Through the Limit Cycle Analysis
,”
Mechatronics
,
16
(
2
), pp.
131
140
.10.1016/j.mechatronics.2005.09.006
20.
Yoerger
,
D.
,
Cooke
,
J.
, and
Slotine
,
J.-J.
,
1990
, “
The Influence of Thruster Dynamics on Underwater Vehicle Behavior and Their Incorporation Into Control System Design
,”
IEEE J. Oceanic Eng.
,
15
(
3
), pp.
167
179
.10.1109/48.107145
21.
Tang
,
D.
,
Dowell
,
E.
, and
Virgin
,
L.
,
1998
, “
Limit Cycle Behavior of an Airfoil With a Control Surface
,”
J. Fluids Struct.
,
12
(
1
), pp.
839
858
.10.1006/jfls.1998.0174
22.
Noiray
,
N.
,
Durox
,
D.
,
Schuler
,
T.
, and
Candel
,
S.
,
2008
, “
A Unified Framework for Nonlinear Combustion Instability Analysis Based on the Flame Describing Function
,”
J. Fluid Mech.
,
615
(
1
), pp.
139
167
.10.1017/S0022112008003613
23.
Sinopoli
,
B.
,
Schenato
,
L.
,
Franceschetti
,
M.
,
Poolla
,
K.
, and
Sastry
,
S.
,
2008
, “
Optimal Linear LQG Control Over Lossy Networks Without Packet Acknowledgment
,”
Asian J. Control
,
10
(
1
), pp.
3
13
.10.1002/asjc.1
24.
Nilsson
,
J.
,
Bernhardsson
,
B.
, and
Wittenmark
,
B.
,
1998
, “
Stochastic Analysis and Control of Real-Time Systems With Random Time Delays
,”
Automatica
,
34
(
1
), pp.
57
64
.10.1016/S0005-1098(97)00170-2
25.
Riskin
,
E.
,
Boulis
,
C.
,
Otterson
,
S.
, and
Ostendorf
,
M.
,
2001
, “
Graceful Degradation of Speech Recognition Performance Over Lossy Packet Networks
,”
Eurospeech
, pp. 2715–2719.
26.
Slotine
,
J.-J. E.
, and
Li
,
W.
,
1991
,
Applied Nonlinear Control
,
Prentice Hall
,
Upper Saddle River, NJ
.
This content is only available via PDF.

Article PDF first page preview

Article PDF first page preview
You do not currently have access to this content.