We consider an optimal control problem for a model of a Stirling engine that is actively controlled through its displacer piston motion. The framework of optimal periodic control (OPC) is used as the setting for this active control problem. We use the idealized isothermal Schmidt model for the system dynamics and formulate the control problem so as to maximize mechanical power output while trading off a penalty on control (displacer motion) effort. An iterative first-order algorithm is used to obtain the optimal periodic motion of the engine and control input. We show that optimal motion is typically nonsinusoidal with significant higher harmonic content, and that a significant increase in the power output of the engine is possible through the optimal scheduling of the displacer motion. These results indicate that OPC may provide a framework for a large class of energy conversion and harvesting problems in which active actuation is available.

References

References
1.
Kongtragool
,
B.
, and
Wongwises
,
S.
,
2003
, “
A Review of Solar-Powered Stirling Engines and Low Temperature Differential Stirling Engines
,”
Renewable Sustainable Energy Rev.
,
7
(
2
), pp.
131
154
.10.1016/S1364-0321(02)00053-9
2.
Riofrio
,
J. A.
,
Al-Dakkan
,
K.
,
Hofacker
,
M. E.
, and
Barth
,
E. J.
,
2008
, “
Control-Based Design of Free-Piston Stirling Engines
,”
American Control Conference
,
IEEE
, pp.
1533
1538
.
3.
Hofacker
,
M.
,
Kong
,
J.
, and
Barth
,
E. J.
,
2009
, “
A Lumped-Parameter Dynamic Model of a Thermal Regenerator for Free-Piston Stirling Engines
,”
ASME
Paper No. DSCC2009-2741, pp. 237–244.10.1115/DSCC2009-2741
4.
Hofacker
,
M. E.
,
Tucker
,
J. M.
, and
Barth
,
E. J.
,
2011
, “
Modeling and Validation of Free-Piston Stirling Engines Using Impedance Controlled Hardware-in-the-Loop
,”
ASME
Paper No. DSCC2011-6105, pp. 153–160.10.1115/DSCC2011-6105
5.
Mueller-Roemer
,
C.
, and
Caines
,
P.
,
2013
, “
Isothermal Energy Function State. Space Model of a Stirling Engine
,”
ASME J. Dyn. Syst., Meas., Control
(Submitted).
6.
Gopal
,
V. K.
,
Duke
,
R.
, and
Clucas
,
D.
,
2009
, “
Active Stirling Engine
,”
TENCON 2009-2009 IEEE Region 10 Conference
,
IEEE
, pp.
1
6
.
7.
Ulusoy
,
N.
,
1994
, “
Dynamic Analysis of Free Piston Stirling Engines
,” Ph.D. thesis, Case Western Reserve University, Cleveland, OH.
8.
Speyer
,
J.
, and
Evans
,
R.
,
1984
, “
A Second Variational Theory for Optimal Periodic Processes
,”
IEEE Trans. Autom. Control
,
29
(
2
), pp.
138
148
.10.1109/TAC.1984.1103482
9.
Speyer
,
J. L.
,
Dannemiller
,
D.
, and
Walker
,
D.
,
1985
, “
Periodic Optical Cruise of an Atmospheric Vehicle
,”
J. Guid. Control Dyn.
,
8
(
1
), pp.
31
38
.10.2514/3.19931
10.
Speyer
,
J. L.
,
1996
, “
Periodic Optimal Flight
,”
J. Guid. Control Dyn.
,
19
(
4
), pp.
745
755
.10.2514/3.21695
11.
Gilbert
,
E. G.
,
1976
, “
Vehicle Cruise: Improved Fuel Economy by Periodic Control
,”
Automatica
,
12
(
2
), pp.
159
166
.10.1016/0005-1098(76)90079-0
12.
Gilbert
,
E. G.
,
1977
, “
Optimal Periodic Control: A General Theory of Necessary Conditions
,”
SIAM J. Control Optim.
,
15
(
5
), pp.
717
746
.10.1137/0315046
13.
Sage
,
A. P.
,
1968
, “
Optimum Systems Control
,” Technical Report DTIC Document.
14.
Bryson
,
A. E.
, and
Ho
,
Y.-C.
,
1975
,
Applied Optimal Control: Optimization, Estimation, and Control
,
Taylor & Francis
,
Boca Raton, FL
.
15.
Kirk
,
D. E.
,
2012
,
Optimal Control Theory: An Introduction
,
Dover Publications
,
Mineola, NY
.
16.
Horn
,
F.
, and
Lin
,
R.
,
1967
, “
Periodic Processes: A Variational Approach
,”
Ind. Eng. Chem. Process Des. Dev.
,
6
(
1
), pp.
21
30
.10.1021/i260021a005
17.
Kowler
,
D. E.
, and
Kadlec
,
R. H.
,
1972
, “
The Optimal Control of a Periodic Adsorber: Part II. Theory
,”
AIChE J.
,
18
(
6
), pp.
1212
1219
.10.1002/aic.690180619
18.
van Noorden
,
T.
,
Verduyn Lunel
,
S.
, and
Bliek
,
A.
,
2003
, “
Optimization of Cyclically Operated Reactors and Separators
,”
Chem. Eng. Sci.
,
58
(
18
), pp.
4115
4127
.10.1016/S0009-2509(03)00274-4
19.
Yakubovich
,
V.
, and
Starzhinskii
,
V.
,
1972
,
Lineinye differentsial'nye uravneniya s periodicheskimi koeffitsientami (Linear Differential Equations With Periodic Coefficients)
,
Wiley
,
New York
.
You do not currently have access to this content.