This paper proposes a sliding mode based repetitive learning control method for high-precision tracking of robot manipulators with actuator saturation. Advantages of the proposed control include the absence of model parameter in the control law formulation and the ability to remove the possibility of actuator failure due to excessive torque input levels. Lyapunov's direct method is employed to prove semiglobal asymptotic tracking. Simulation results on a three degree-of-freedom (3DOF) robot illustrate the effectiveness and improved performance of the proposed scheme.

References

References
1.
Inoue
,
T.
,
Nakano
,
M.
,
Kubo
,
T.
,
Matsumoto
,
S.
, and
Baba
,
H.
,
1981
, “
High Accuracy Control of a Proton Synchrotron Magnet Power Supply
,”
Proceedings of the 8th IFAC World Congress
,
Kyoto
,
Japan
, pp.
3137
3142
.
2.
Hara
,
S.
,
Yamamoto
,
Y.
,
Omata
,
T.
, and
Nakano
,
M.
,
1988
, “
Repetitive Control Systems: A New Type Servo Systems for Periodic Exogenous Signals
,”
IEEE Trans. Autom. Control
,
33
(
7
), pp.
659
667
.10.1109/9.1274
3.
Sadegh
,
N.
,
Horowith
,
R.
,
Kao
,
W. W.
, and
Tomizuka
,
M.
,
1990
, “
A Unified Approach to the Design of Adaptive and Repetitive Controllers for Robotic Manipulators
,”
ASME J. Dyn. Syst., Meas., Control
,
112
(
4
), pp.
618
629
.10.1115/1.2896187
4.
Ghosh
,
J.
, and
Paden
,
B.
,
2000
, “
Nonlinear Repetitive Control
,”
IEEE Trans. Autom. Control
,
45
(
5
), pp.
949
954
.10.1109/9.855558
5.
Liu
,
T. S.
, and
Lee
,
W. S.
,
2000
, “
A Repetitive Learning Method Based on Sliding Mode for Robot Control
,”
ASME J. Dyn. Syst., Meas., Control
,
122
(
1
), pp.
40
48
.10.1115/1.482427
6.
Sun
,
M. X.
,
Sam Ge
,
S.
, and
Mareels
,
I. M. Y.
,
2006
, “
Adaptive Repetitive Learning Control of Robotic Manipulators Without the Requirement for Initial Repositioning
,”
IEEE Trans. Rob.
,
22
(
3
), pp.
563
568
10.1109/TRO.2006.870650.
7.
Liuzzo
,
S.
, and
Tomei
,
P.
,
2008
, “
A Global Adaptive Learning Control for Robotic Manipulators
,”
Automatica
,
44
(
5
), pp.
1379
1384
.10.1016/j.automatica.2007.10.025
8.
Kasac
,
J.
,
Novakovic
,
B.
,
Majetic
,
D.
, and
Brezak
,
D.
,
2008
, “
Passive Finite-Dimensional Repetitive Control of Robot Manipulators
,”
IEEE Trans. Control Syst. Technol.
,
16
(
3
), pp.
570
576
.10.1109/TCST.2007.912235
9.
Kasac
,
J.
,
Novakovic
,
B.
, and
Milic
,
V.
,
2011
, “
On Equivalence Between Internal and External Model-Based Repetitive Learning Controllers for Nonlinear Passive Systems
,”
Asian J. Control
,
13
(
1
), pp.
15
24
.10.1002/asjc.273
10.
Dixon
,
W. E.
,
Zergeroglu
,
E.
,
Dawson
,
D. M.
, and
Costic
,
B. T.
,
2002
, “
Repetitive Learning Control: A Lyapunov-Based Approach
,”
IEEE Trans. Syst., Man, Cybern.: Part B: Cybern.
,
32
(
4
), pp.
538
545
.10.1109/TSMCB.2002.1018772
11.
Saberi
,
A.
,
Lin
,
Z. L.
, and
Teel
,
A. R.
,
1996
, “
Control of Linear Systems With Saturating Actuators
,”
IEEE Trans. Autom. Control
,
41
(
3
), pp.
368
378
.10.1109/9.486638
12.
Zergeroglu
,
E.
,
Dixon
,
W.
,
Behal
,
A.
, and
Dawson
,
D.
,
2000
, “
Adaptive Set-Point Control of Robotic Manipulators With Amplitude-Limited Control Inputs
,”
Robotica
,
18
(
2
), pp.
171
181
.10.1017/S0263574799001988
13.
Santibáňez
,
V.
,
Kelly
,
R.
, and
Reyes
,
F.
,
1998
, “
A New Set-Point Controller With Bounded Torques for Robot Manipulators
,”
IEEE Trans. Ind. Electron.
,
45
(
1
), pp.
126
133
.10.1109/41.661313
14.
Zavala-Río
,
A.
, and
Santibáňez
,
V.
,
2006
, “
Simple Extensions of the PD-With-Gravity-Compensation Control Law for Robot Manipulators With Bounded Inputs
,”
IEEE Trans. Control Syst. Technol.
,
14
(
5
), pp.
958
965
.10.1109/TCST.2006.876932
15.
Zavala-Río
,
A.
, and
Santibáňez
,
V.
,
2007
, “
A Natural Saturating Extension of the PD-With-Desired Gravity-Compensation Control Law for Robot Manipulators With Bounded Inputs
,”
IEEE Trans. Rob.
,
23
(
2
), pp.
386
391
.10.1109/TRO.2007.892224
16.
Alvarez-Ramirez
,
J.
,
Kelly
,
R.
, and
Cervantes
,
L.
,
2003
, “
Semiglobal Stability of Saturated Linear PID Control for Robot Manipulators
,”
Automatica
,
39
(
6
), pp.
989
995
.10.1016/S0005-1098(03)00035-9
17.
Su
,
Y. X.
,
Müller
,
P. C.
, and
Zheng
,
C. H.
,
2010
, “
Global Asymptotic Saturated PID Control for Robot Manipulators
,”
IEEE Trans. Control Syst. Technol.
,
18
(
6
), pp.
1280
1288
10.1109/TCST.2009.2035924.
18.
Aguinga-Ruiz
,
E.
,
Zavala-Rio
,
A.
,
Santibanez
,
V.
, and
Reyes
,
F.
,
2009
, “
Global Trajectory Tracking Through Static Feedback for Robot Manipulators With Bounded Inputs
,”
IEEE Trans. Control Syst. Technol.
,
17
(
4
), pp.
934
944
.10.1109/TCST.2009.2013938
19.
Santibáňez
,
V.
, and
Kelly
,
R.
,
2001
, “
Global Asymptotic Stability of Bounded Output Feedback Tracking Control for Robot Manipulators
,”
Proceedings of the 40th IEEE Conference on Decision and Control
,
Orlando
,
FL
, pp.
1378
1379
.
20.
Dixon
,
W. E.
,
de Queiroz
,
M. S.
,
Zhang
,
F.
, and
Dawson
,
D. M.
,
1999
, “
Tracking Control of Robot Manipulators With Bounded Torque Inputs
,”
Robotica
,
17
(
2
), pp.
121
129
.10.1017/S0263574799001228
21.
Zhang
,
F.
,
Dawson
,
D. M.
,
de Queiroz
,
M. S.
, and
Dixon
,
W.
,
2000
, “
Global Adaptive Output Feedback Tracking Control of Robot Manipulators
,”
IEEE Trans. Autom. Control
,
45
(
6
), pp.
1203
1208
.10.1109/9.863607
22.
Orlov
,
Y.
,
Alvarez
,
J.
,
Acho
,
L.
, and
Aguilar
,
L.
,
2003
, “
Global Position Regulation of Friction Manipulators Via Switched Chattering Control
,”
Int. J. Control
,
76
(
14
), pp.
1446
1452
.10.1080/0020717031000149627
23.
Tian
,
H. H.
, and
Su
,
Y. X.
,
2011
, “
Nonlinear Decentralized Repetitive Control for Global Asymptotic Tracking of Robot Manipulators
,”
Aata Autom. Sin.
,
37
(
10
), pp.
1264
1271
, Available at: http://www.researchgate.net/publication/265489152_Nonlinear_decentralized_repetitive_control_for_a_global_asymptotic_tracking_of_robot_manipulators
You do not currently have access to this content.