The current treatment of otitis media with effusion (OME) when medication fails is to surgically insert a grommet tube in the tympanic membrane. A novel precision surgical device has been developed, which allows tube insertion to be accomplished in an office setting. The device leverages on a piezoelectric ultrasonic motor (USM) stage to facilitate the motion sequences for the procedures. The core engine of the device is in the USM motion controller to achieve the high precision, fast response, and repeatability necessary to allow these medical procedures to be efficiently and successfully done with minimum trauma to the patient. This paper focuses on the controller design for the USM to meet the unique set of specifications to apply the surgical device optimally on patient with OME. A model of the USM is first built and identified. A proportional-integral-derivative (PID) controller is used as the main tracking controller with the parameters derived optimally using an linear-quadratic regulator (LQR)-assisted tuning approach. A sign function compensator acts to remove nonlinear dynamics due mainly to friction and a sliding mode controller further rejects remnant uncertainty and disturbance. The experimental results show that the constituent control components fulfill their respective functions well, and collectively, the composite controller is effective toward delivering the level of control performance to meet the objectives for the medical procedures.

References

References
1.
Tan
,
K. K.
,
Ng
,
S. C.
, and
Xie
,
Y.
,
2002
, “
Optimal Intra-Cytoplasmic Sperm Injection With a Piezo Micromanupulator
,”
Proceedings of the 4th World Congress on Intelligent Control and Automation
, pp.
1120
1123
10.1109/WCICA.2002.1020753.
2.
Takemura
,
K.
,
Park
,
S.
, and
Maeno
,
T.
,
2008
, “
Control of Multi-DOF Ultrasonic Actuator for Dexterous Surgical Instrument
,”
J. Sound Vib.
,
311
(
3–5
), pp.
652
666
.10.1016/j.jsv.2007.09.040
3.
Bluestone
,
C. D.
, and
Rosenfeld
,
R. M.
,
2002
,
Surgical Atlas of Pediatric Otolaryngology
,
BC Decker, Inc.
, London.
4.
Brodsky
,
L.
,
Brookhauser
,
P.
,
Chait
,
D.
,
Reilly
,
J.
,
Deutsch
,
E.
,
Cook
,
S.
,
Waner
,
M.
,
Shaha
,
S.
, and
Nauenberg
,
E.
,
1999
, “
Office-Based Insertion of Pressure Equalization Tubes: The Role of Laser-Assisted Tympanic Membrane Fenestration
,”
Laryrigoscope
,
109
(
12
), pp.
2009
2014
.10.1097/00005537-199912000-00022
5.
Kaplan
,
A. V.
,
Tartaglia
,
J.
,
Vaughan
,
R.
, and
Jones
,
C.
,
2010
, “
Mechanically Registered Videoscopic Myringotomy/Tympanostomy Tube Placement System
,” U.S. Patent No. 7704259B2.
6.
Liu
,
G.
,
Morriss
,
J. H.
,
Vrany
,
J. D.
,
Knodel
,
B.
,
Walker
,
J. A.
,
Gross
,
T. D.
,
Clopp
,
M. D.
, and
Andreas
,
B. H.
,
2011
, “
Tympanic Membrane Pressure Equalization Tube Delivery System
,” U.S. Patent No. 20110015645A1.
7.
Hagood
, IV,
N. W.
, and
McFarland
,
A. J.
,
1995
Modeling of a Piezoelectric Rotary Ultrasonic Motor
,”
IEEE Trans. Ferroelectr. Freq. Control Ultrason.
,
42
(
2
), pp.
210
224
.10.1109/58.365235
8.
Merry
,
R.
,
van de Molengraft
,
R.
, and
Steinbuch
,
M.
,
2010
, “
Modeling of a Walking Piezo Actuator
,”
Sens. Actuators, A
,
162
(
1
), pp.
51
60
.10.1016/j.sna.2010.05.033
9.
Petit
,
L.
, and
Gonnard
,
P.
,
2009
, “
A Multilayer TWILA Ultrasonic Motor
,”
Sens. Actuators, A
,
149
(
1
), pp.
113
119
.10.1016/j.sna.2008.09.020
10.
Shi
,
Y.
,
Zhao
,
C.
, and
Huang
,
W.
,
2010
, “
Linear Ultrasonic Motor With Wheel-Shaped Stator
,”
Sens. Actuators, A
,
161
(
1C2
), pp.
205
209
.10.1016/j.sna.2010.05.009
11.
Merry
,
R. J. E.
,
Maassen
,
M. G. J. M.
,
van de Molengraft
,
van de Wouw
,
M. J. G. N.
, and
Steinbuch
,
M.
,
2011
, “
Modeling and Waveform Optimization of a Nano-Motion Piezo Stage
,”
IEEE/ASME Trans. Mechatronics
,
16
(
4
), pp.
615
626
.10.1109/TMECH.2010.2050209
12.
Lin
,
F.-J.
,
1997
, “
Fuzzy Adaptive Model-Following Position Control for Ultrasonic Motor
,”
IEEE Trans. Power Electron.
,
12
(
2
), pp.
261
268
.10.1109/63.558737
13.
Peng
,
Y.-F.
, and
Lin
,
C.-M.
,
2007
, “
Intelligent Motion Control of Linear Ultrasonic Motor With H∞ Tracking Performance
,”
IET Control Appl.
,
1
(
1
), pp.
9
17
.10.1049/iet-cta:20050348
14.
Mu
,
S.
,
Tanaka
,
K.
,
Wakasa
,
Y.
,
Akashi
,
T.
,
Kobayashi
,
N.
,
Uchikado
,
S.
, and
Osa
,
Y.
,
2009
, “
Intelligent IMC-PID Control for Ultrasonic Motor
,”
IEEE International Conference on Networking
,
Sensing and Control
, Okayama, Japan, Mar. 26–29, pp.
201
205
.
15.
Shi
,
J.
, and
Liu
,
B.
,
2010
, “
Optimum Efficiency Control of Traveling-Wave Ultrasonic Motor System
,”
IEEE Trans. Ind. Electron.
,
58
(
10
), pp.
4822
4829
10.1109/TIE.2011.2114316.
16.
Physik Instrumente (PI) GmbH & Co. KG.
, “
M-663 PLine® Linear Motor Stage
,” http://www.pi.ws
17.
Physik Instrumente (PI) GmbH & Co. KG.
, “
C-185 PLine® Drive Electronics
,” http://www.pi.ws
18.
He
,
J.-B.
,
Wang
,
Q.-G.
, and
Lee
,
T.-H.
,
2000
, “
PI/PID Controller Tuning via LQR Approach
,”
Chem. Eng. Sci.
,
55
(
13
), pp.
2429
2439
.10.1016/S0009-2509(99)00512-6
19.
Franklin
,
G. F.
,
Powell
,
J. D.
, and
Emami-Naeini
,
A.
,
2001
,
Feedback Control of Dynamic Systems
,
6th ed.
,
Prentice-Hall, Inc.
,
Upper Saddle River
, NJ, Chap. 7.
20.
Astrom
,
K. J.
, and
Wittenmark
,
B.
,
2008
,
Adaptive Control
,
2nd ed.
,
Dover Publications, Inc.
,
New York
, Chap. 8.
You do not currently have access to this content.