In this paper, our main concern is the problem of stabilization of discrete-time linear systems with both quantization and noise input. Stabilizability by means of quantizers that perform adaptations called “zooming” is analyzed. The noise input can be separated into an additive white noise part and a deterministic constant input disturbance. The analysis of mean-square stability of the system with noise input is essentially the asymptotic stability of the system disturbed by a constant input. It is shown that the system with the constant input disturbance is asymptotically stabilized by the quantized feedback control policy if the system without noise input can be stabilized by a linear state feedback law. Both the state quantization and the input quantization are studied.

References

References
1.
Elia
,
N.
, and
Mitter
,
K.
,
2001
, “
Stabilization of Linear Systems With Limited Information
,”
IEEE Trans. Autom. Control
,
46
(
9
), pp.
1384
1400
.10.1109/9.948466
2.
Fu
,
M. Y.
, and
Xie
,
L. H.
,
2005
, “
The Sector Bound Approach to Quantized Feedback Control
,”
IEEE Trans. Autom. Control
,
50
(
11
), pp.
1698
1711
.10.1109/TAC.2005.858689
3.
Xu
,
Q.
,
Zhang
,
C.
, and
Dullerud
,
G. E.
,
2014
, “
Stabilization of Markovian Jump Linear Systems With Log-Quantized Feedback
,”
ASME J. Dyn. Syst. Meas. Control
,
136
(
3
), p.
031019
.10.1115/1.4026133
4.
Brockett
,
R. W.
, and
Liberzon
,
D.
,
2000
, “
Quantized Feedback Stabilization of Linear Systems
,”
IEEE Trans. Autom. Control
,
45
(
7
), pp.
1279
1289
.10.1109/9.867021
5.
Liberzon
,
D.
,
2003
, “
Hybrid Feedback Stabilization of Systems With Quantized Signals
,”
Automatica
,
39
(
9
), pp.
1543
1554
.10.1016/S0005-1098(03)00151-1
6.
Liberzon
,
D.
, and
Nesic
,
D.
,
2007
, “
Input-to-State Stabilization of Linear Systems With Quantized State Measurements
,”
IEEE Trans. Autom. Control
,
52
(
5
), pp.
767
781
.10.1109/TAC.2007.895850
7.
Yan
,
J.
,
Xia
,
Y.
,
Liu
,
B.
, and
Fu
,
M.
,
2011
, “
Stabilization of Quantized Linear Systems With Packet Dropout
,”
IET Control Theory Appl.
,
5
(
8
), pp.
982
989
.10.1049/iet-cta.2010.0182
8.
Hu
,
J. S.
,
Chen
,
K. Y.
,
Shen
,
T. Y.
, and
Tang
,
C. H.
,
2011
, “
Control of Voltage Source Inverter Using Multidimensional Feedback Quantization Modulator
,”
IEEE Trans. Ind. Electron.
,
58
(
7
), pp.
3027
3036
.10.1109/TIE.2010.2070781
9.
Precup
,
R. E.
,
Tomescu
,
M. L.
,
Radac
,
M. B.
,
Petriu
,
E. M.
,
Preitl
,
S.
, and
Dragos
,
C. A.
,
2012
, “
Iterative Performance Improvement of Fuzzy Control Systems for Three Tank Systems
,”
Expert Syst. Appl.
,
39
(
9
), pp.
8288
8299
.10.1016/j.eswa.2012.01.165
10.
Coutinho
,
D. F.
,
Fu
,
M. Y.
, and
Souza
,
C. E. de
,
2010
, “
Input and Output Quantized Feedback Linear Systems
,”
IEEE Trans. Autom. Control
,
55
(
3
), pp.
761
766
.10.1109/TAC.2010.2040497
11.
Che
,
W. W.
,
Wang
,
J. L.
, and
Yang
,
G. H.
,
2010
, “
Quantized H∞ Filtering for Networked Systems With Random Sensor Packet Losses
,”
IET Control Theory Appl.
,
4
(
8
), pp.
1339
1352
.10.1049/iet-cta.2009.0120
12.
Liu
,
B.
,
Xia
,
Y. Q.
,
Shang
,
J. Z.
, and
Fu
,
M. Y.
,
2011
, “
Quantization Over Network Based on Kalman Filter
,”
Proceedings of the 4th International Symposium on Advanced Control of Industrial Processes
,
Hangzhou
, May 23–26, pp.
433
438
.
13.
Nair
,
G. N.
, and
Evans
,
R. J.
,
2004
, “
Stabilizability of Stochastic Linear Systems With Finite Feedback Data Rates
,”
SIAM J. Control Optim.
,
43
(
2
), pp.
413
436
.10.1137/S0363012902402116
14.
Yu
,
B.
, and
Shi
,
Y.
,
2008
, “
State Feedback Stabilization of Networked Control Systems With Random Time Delays and Packet Dropout
,”
Proceedings of
ASME
Dynamic Systems and Control Conference, Paper No. DSCC2008-2191, Ann Arbor, MI, Oct. 20–22, pp.
639
645
.10.1115/DSCC2008-2191
15.
Furuta
,
K.
,
Yamakita
,
M.
, and
Kobayashi
,
S.
,
1991
, “
Swing Up Control of Inverted Pendulum
,”
IEEE International Conference on Industrial Electronics
,
Control and Instrumentation (IECON’91)
, Kobe, Japan, Oct. 28–Nov. 1, pp.
2193
2198
.
You do not currently have access to this content.