Since the NOx sensor is cross-sensitive to gaseous ammonia, the reading of NOx sensor may not be accurate when the gaseous ammonia is involved and it is a combination of the actual NOx concentration plus the ammonia concentration multiplied by a factor. The factor is named as NOx sensor cross-sensitivity factor. As the reading is inaccurate, this cross-sensitivity phenomenon restricts the application of NOx sensor in the selective catalytic reduction (SCR) system. A practical and economic approach is to design an observer to estimate the cross-sensitivity factor and correct the NOx sensor reading. In this work, the NOx sensor ammonia-cross-sensitivity factor observer design problem for diesel engine SCR systems is investigated. To achieve the objective, first, a three-state nonlinear model for the SCR system is adopted. To establish the model of the ammonia cross-sensitivity factor, it is assumed that the qth-order derivative of the factor is zero. Then, based on the nonlinear model, a proportional-multiple-integral (PMI) observer of the factor is proposed and a nonlinear estimation error system is obtained. With the linear-parameter-varying (LPV) technique, the stability, and the H performance of the nonlinear estimation error system are investigated. Based on the analysis results, the design methods of the stable and the H observer gains are developed. At the end, simulations and comparisons via an experimentally validated full vehicle simulator are carried out to illustrate the efficacy and the advantages of the proposed approach over the existing methods. Since the effect of disturbance to the estimation is considered and constrained in the H observer, the designed H observer has a better estimation performance when the system is subject to disturbance.

References

References
1.
Johnson
,
T.
,
2008
, “
Diesel Engine Emissions and Their Control an Overview
,”
Platinum Met. Rev.
,
52
(
1
), pp.
23
37
.10.1595/147106708X248750
2.
Chen
,
P.
, and
Wang
,
J.
,
2014
, “
Air-Fraction Modeling for Simultaneous Diesel Engine NOx and PM Emissions Control During Active DPF Regenerations
,”
Appl. Energy
,
122
(
1
), pp.
310
320
.10.1016/j.apenergy.2014.02.031
3.
Zhao
,
J.
, and
Wang
,
J.
,
2013
, “
Control-Oriented Multi-Phase Combustion Model for Biodiesel Fueled Engines
,”
Appl. Energy
,
108
(
8
), pp.
92
99
.10.1016/j.apenergy.2013.03.001
4.
Koebel
,
M.
,
Elsener
,
M.
, and
Kleemann
,
M.
,
2000
, “
Urea-SCR: A Promising Technique to Reduce NOx Emissions From Automotive Diesel Engines
,”
Catal. Today
,
59
(
3–4
), pp.
335
345
.10.1016/S0920-5861(00)00299-6
5.
Zhang
,
H.
,
Wang
,
J.
, and
Wang
,
Y.-Y.
,
2013
, “
Robust Filtering for Ammonia Coverage Estimation in Diesel Engine Selective Catalytic Reduction (SCR) Systems
,”
ASME J. Dyn. Syst., Meas., Control
,
135
(
6
), p.
064504
.10.1115/1.4024890
6.
Liang
,
Z.
,
Ma
,
X.
,
Lin
,
H.
, and
Tang
,
Y.
,
2010
, “
The Energy Consumption and Environmental Impacts of SCR Technology in China
,”
Appl. Energy
,
88
(
4
), pp.
1120
1129
.10.1016/j.apenergy.2010.10.010
7.
Zhang
,
H.
,
Chen
,
Y.
,
Wang
,
J.
, and
Yang
,
S.
,
2015
, “
Cycle-Based Optimal NOx Emission Control of Selective Catalytic Reduction Systems With Dynamic Programming Algorithm
,”
Fuel
,
141
, pp.
200
206
.10.1016/j.fuel.2014.10.051
8.
Camarillo
,
M. K.
,
Stringfellow
,
W. T.
,
Hanlon
,
J. S.
, and
Watson
,
K. A.
,
2013
, “
Investigation of Selective Catalytic Reduction for Control of Nitrogen Oxides in Full-Scale Dairy Energy Production
,”
Appl. Energy
,
106
(
6
), pp.
328
336
.10.1016/j.apenergy.2013.01.066
9.
Dardiotis
,
C.
,
Martini
,
G.
,
Marotta
,
A.
, and
Manfredi
,
U.
,
2013
, “
Low-Temperature Cold-Start Gaseous Emissions of Late Technology Passenger Cars
,”
Appl. Energy
,
111
(
11
), pp.
468
478
.10.1016/j.apenergy.2013.04.093
10.
Koebel
,
M.
,
Elsener
,
M.
, and
Madia
,
G.
,
2001
, “
Reaction Pathways in the Selective Catalytic Reduction Process With NO and NO2 at Low Temperatures
,”
Ind. Eng. Chem. Res.
,
40
(
1
), pp.
52
59
.10.1021/ie000551y
11.
Zhang
,
H.
,
Wang
,
J.
, and
Wang
,
Y.-Y.
,
2014
, “
Nonlinear Observer Design of Diesel Engine Selective Catalytic Reduction Systems With NOx Sensor Measurements
,”
IEEE/ASME Trans. Mechatron.
, (in press).
12.
Sasaki
,
S.
,
Sarlashkar
,
J.
,
Neely
,
G. D.
,
Wang
,
J.
,
Lu
,
Q.
, and
Sono
,
H.
,
2008
, “
Investigation of Alternative Combustion, Airflow-Dominant Control and Aftertreatment System for Clean Diesel Vehicles
,”
SAE Int. J. Fuels Lubr.
,
116
(
4
), pp.
486
495
.
13.
Ichi Shimizu
,
K.
, and
Satsuma
,
A.
,
2007
, “
Hydrogen Assisted Urea-SCR and NH3-SCR With Silver-Alumina as Highly Active and SO2-Tolerant de-NOx Catalysis
,”
Appl. Catal.
,
77
(
1–2
), pp.
202
205
.10.1016/j.apcatb.2007.07.021
14.
Zhang
,
H.
,
Wang
,
J.
, and
Wang
,
Y.-Y.
,
2014
, “
Sensor Reduction in Diesel Engine Two-Cell Selective Catalytic Reduction (SCR) Systems for Automotive Applications
,”
IEEE/ASME Trans. Mechatron.
(in press).
15.
Ciardelli
,
C.
,
Nova
,
I.
,
Tronconi
,
E.
,
Konrad
,
B.
,
Chatterjee
,
D.
,
Ecke
,
K.
, and
Weibel
,
M.
,
2004
, “
SCR-DeNOx for Diesel Engine Exhaust Aftertreatment: Unsteady-State Kinetic Study and Monolith Reactor Modeling
,”
Chem. Eng. Sci.
,
59
(
22–23
), pp.
5301
5309
.10.1016/j.ces.2004.07.016
16.
Willems
,
F.
,
Cloudt
,
R.
,
van den Eijnden
,
E.
,
van Genderen
,
M.
,
Verbeek
,
R.
,
de Jager
,
B.
,
Boomsma
,
W.
, and
van den Heuvel
,
I.
,
2007
, “
Is Closed-Loop SCR Control Required to Meet Future Emission Targets?
,”
Proceedings of the SAE 2007 World Congress
, SAE Paper No. 2007-01-1574.
17.
Hsieh
,
M.-F.
, and
Wang
,
J.
,
2010
, “
An Extended Kalman Filter for NOx Sensor Ammonia Cross-Sensitivity Elimination in Selective Catalytic Reduction Applications
,” 2010 American Control Conference, Baltimore, MD, pp.
3033
3038
.
18.
Zhang
,
H.
,
Wang
,
J.
, and
Wang
,
Y.-Y.
,
2013
, “
Robust Mixed H2/H∞ Gain-Scheduling Observer Design for Removal of NOx Sensor Ammonia Cross-Sensitivity in Selective Catalytic Reduction Systems
,”
American Control Conference
, Washington, DC, pp.
2180
2185
.
19.
Fridman
,
E.
,
Shaked
,
U.
, and
Xie
,
L.
,
2003
, “
Robust H∞Filtering of Linear Systems With Time-Varying Delay
,”
IEEE Trans. Autom. Control
,
48
(
1
), pp.
159
165
.10.1109/TAC.2002.806674
20.
Zhang
,
X.-M.
, and
Han
,
Q.-L.
,
2009
, “
A Less Conservative Method for Designing H∞Filters for Linear Time-Delay Systems
,”
Int. J. Robust Nonlinear Control
,
19
(
12
), pp.
1376
1396
.10.1002/rnc.1407
21.
Qiu
,
J.
, and
Feng
,
G.
,
2008
, “
Improved Delay-Dependent H∞Filtering Design for Discrete-Time Polytopic Linear Delay Systems
,”
IEEE Trans. Circuits Syst. II
,
55
(
2
), pp.
178
182
.10.1109/TCSII.2007.910962
22.
Zhang
,
J.
,
Xia
,
Y.
, and
Shi
,
P.
,
2009
, “
Parameter-Dependent Robust H∞Filtering for Uncertain Discrete-Time Systems
,”
Automatica
,
45
(
2
), pp.
560
565
.10.1016/j.automatica.2008.09.005
23.
Zhang
,
H.
,
Shi
,
Y.
, and
Wang
,
J.
,
2014
, “
On Energy-to-Peak Filtering for Nonuniformly Sampled Nonlinear Systems: A Markovian Jump System Approach
,”
IEEE Trans. Fuzzy Syst.
,
22
(
1
), pp.
212
222
.10.1109/TFUZZ.2013.2250291
24.
Zhang
,
H.
,
Saadat Mehr
,
A.
, and
Shi
,
Y.
,
2010
, “
Improved Robust Energy-to-Peak Filtering for Uncertain Linear Systems
,”
Sig. Process
,
90
(
9
), pp.
2667
2675
.10.1016/j.sigpro.2010.03.011
25.
Zhang
,
H.
,
Shi
,
Y.
, and
Saadat Mehr
,
A.
,
2010
, “
Robust Energy-to-Peak Filtering for Networked Systems With Time-Varying Delays and Randomly Missing Data
,”
IET Control Theory Appl.
,
4
(
12
), pp.
2921
2936
.10.1049/iet-cta.2009.0243
26.
Upadhyay
,
D.
, and
Nieuwstadt
,
M. V.
,
2006
, “
Model Based Analysis and Control Design of a Urea-SCR deNOx Aftertreatment System
,”
ASME J. Dyn. Sys., Meas., Control
,
128
(
3
), pp.
737
741
.10.1115/1.2234494
27.
Hsieh
,
M.-F.
, and
Wang
,
J.
,
2010
, “
Observer-Based Estimation of Selective Catalytic Reduction Catalyst Ammonia Storage
,”
Proc. Inst. Mech. Eng., Part D
,
224
(
9
), pp.
1199
1211
.10.1243/09544070JAUTO1482
28.
Hsieh
,
M.-F.
, and
Wang
,
J.
,
2011
, “
Design and Experimental Validation of an Extended Kalman Filter-Based NOx Concentration Estimator in Selective Catalytic Reduction System Applications
,”
Control Eng. Pract.
,
19
(
4
), pp.
346
353
.10.1016/j.conengprac.2010.12.002
29.
White
,
A.
,
Choi
,
J.
,
Nagamune
,
R.
, and
Zhu
,
G.
,
2011
, “
Gain-Scheduling Control of Port-Fuel-Injection Processes
,”
Control Eng. Pract.
,
19
(
4
), pp.
380
394
.10.1016/j.conengprac.2010.12.007
30.
Gahinet
,
P.
, and
Apkarian
,
P.
,
1994
, “
A Linear Matrix Inequality Approach to H∞Control
,”
Int. J. Rob. Nonlinear Control
,
4
(
4
), pp.
421
448
.10.1002/rnc.4590040403
31.
Arnettm
,
M.
,
Bayer
,
K.
,
Coburn
,
C.
,
Guezzenec
,
Y.
,
Koprubasi
,
K.
,
Mudlam-Mohler
,
S.
,
Sevel
,
K.
,
Shakiba-Herfeh
,
M.
, and
Rizzoni
,
G.
,
2008
, “
Cleaner Diesel Using Model-Based Design and Advanced Aftertreatment in a Student Competition Vehicle
,”
Proceedings of the SAE 2008 World Congress
,
Detroit
, MI, Paper No. 2008–01–0868.
This content is only available via PDF.

Article PDF first page preview

Article PDF first page preview
You do not currently have access to this content.