In this paper, finite-time attitude coordinated control for spacecraft formation flying (SFF) subjected to input saturation is investigated. More specifically, a bounded finite-time state feedback control law is first developed with the assumption that both attitude and angular velocity signals can be measured and transmitted between formation members. Then, a bounded finite-time output feedback controller is designed with the addition of a filter, which removes the requirement of the angular velocity measurements. In both cases, actuator saturation is explicitly taken into account, and the homogeneous system method is employed to demonstrate the finite-time stability of the closed-loop system. Numerical simulation results are presented to illustrate the efficiency of the proposed control schemes.

References

References
1.
Bristow
,
J.
,
Folta
,
D.
, and
Hartman
,
K.
,
2000
, “
A Formation Flying Technology Vision
,”
AIAA
Paper No. 2000-5194. 10.2514/6.2000-5194
2.
Kang
,
W.
,
2001
, “
Coordinated Control of Multisatellite Systems
,”
J. Guid. Control Dyn.
,
24
(
2
), pp.
360
368
.10.2514/2.4720
3.
Kristiansen
,
R.
,
Grotli
,
E. I.
,
Nicklasson
,
P. J.
, and
Gravdahl
,
J. T.
,
2007
, “
A Model of Relative Translation and Rotation in Leader–Follower Spacecraft Formations
,”
Model., Identif. Control
,
28
(
1
), pp.
3
13
.10.4173/mic.2007.1.1
4.
Liu
,
H. T.
,
Shan
,
J. J.
, and
Sun
,
D.
,
2007
, “
Adaptive Synchronization Control of Multiple Spacecraft Formation Flying
,”
ASME J. Dyn. Syst., Meas.
,
Control
,
129
(
3
), pp.
337
342
.10.1115/1.2719772
5.
Van Dyke
,
M. C.
, and
Hall
,
C. D.
,
2006
, “
Decentralized Coordinated Attitude Control Within a Formation of Spacecraft
,”
J. Guid. Control Dyn.
,
29
(
5
), pp.
1101
1109
.10.2514/1.17857
6.
Liang
,
H. Z.
,
Sun
,
Z. W.
, and
Wang
,
J. Y.
,
2013
, “
Finite-Time Attitude Synchronization Controllers Design for Spacecraft Formations via Behavior-Based Approach
,”
Proc. Inst. Mech. Eng., Part G
,
227
(
11
), pp.
1737
1753
.10.1177/0954410012462508
7.
Ren
,
W.
, and
Beard
,
R. W.
,
2002
, “
Virtual Structure Based Spacecraft Formation Control With Formation Feedback
,”
AIAA
Paper No. 2002-4963. 10.2514/6.2002-4963
8.
Cong
,
B. L.
,
Liu
,
X. D.
, and
Chen
,
Z.
,
2011
, “
Distributed Attitude Synchronization of Formation Flying via Consensus-Based Virtual Structure
,”
Acta Astronaut.
,
68
(
11–12
), pp.
1973
1986
.10.1016/j.actaastro.2010.11.014
9.
Liang
,
H. Z.
,
Wang
,
J. Y.
, and
Sun
,
Z. W.
,
2011
, “
Robust Decentralized Coordinated Attitude Control of Spacecraft Formation
,”
Acta Astronaut.
,
69
(
5–6
), pp.
280
288
.10.1016/j.actaastro.2011.03.018
10.
Liu
,
X.
, and
Kumar
,
K. D.
,
2011
, “
Input-to-State Stability of Model-Based Spacecraft Formation Control Systems With Communication Constraints
,”
Acta Astronaut.
,
68
(
11–12
), pp.
1847
1859
.10.1016/j.actaastro.2011.01.006
11.
Yu
,
S. H.
,
Yu
,
X. H.
,
Shirinzadeh
,
B.
, and
Man
,
Z. H.
,
2005
, “
Continuous Finite-Time Control for Robotic Manipulators With Terminal Sliding Mode
,”
Automatica
,
41
(
11
), pp.
1957
1964
.10.1016/j.automatica.2005.07.001
12.
Feng
,
Y.
,
Yu
,
X. H.
, and
Han
,
F. L.
,
2013
, “
On Nonsingular Terminal Sliding-Mode Control of Nonlinear Systems
,”
Automatica
,
49
(
6
), pp.
1715
1722
.10.1016/j.automatica.2013.01.051
13.
Du
,
H. B.
,
Li
,
S. H.
, and
Qian
,
C. J.
,
2011
, “
Finite-Time Attitude Tracking Control of Spacecraft With Application to Attitude Synchronization
,”
IEEE Trans. Autom. Control
,
56
(
11
), pp.
2711
2717
.10.1109/TAC.2011.2159419
14.
Zhou
,
J. K.
,
Hu
,
Q. L.
, and
Friswell
,
M. I.
,
2013
, “
Decentralized Finite Time Attitude Synchronization Control of Satellite Formation Flying
,”
J. Guid. Control Dyn.
,
36
(
1
), pp.
185
195
.10.2514/1.56740
15.
Bhat
,
S. P.
, and
Bernstein
,
D. S.
,
1997
, “
Finite-Time Stability of Homogeneous Systems
,”
American Control Conference
,
Albuquerque, NM
, June 4–6, pp.
2513
2514
.10.1109/ACC.1997.609245
16.
Bhat
,
S. P.
, and
Bernstein
,
D. S.
,
1998
, “
Continuous Finite-Time Stabilization of the Translational and Rotational Double Integrators
,”
IEEE Trans. Autom. Control
,
43
(
5
), pp.
678
682
.10.1109/9.668834
17.
Bhat
,
S. P.
, and
Bernstein
,
D. S.
,
2000
, “
Finite-Time Stability of Continuous Autonomous Systems
,”
SIAM J. Control Optim.
,
38
(
3
), pp.
751
766
.10.1137/S0363012997321358
18.
Hong
,
Y. G.
, and
Xu
,
Y. S.
,
2002
, “
Finite-Time Control for Robot Manipulators
,”
Syst. Control Lett.
,
46
(
4
), pp.
243
253
.10.1016/S0167-6911(02)00130-5
19.
Wang
,
X. L.
, and
Hong
,
Y. G.
, 2008 “
Finite-Time Consensus for Multi-Agent Networks With Second-Order Agent Dynamics
,”
17th World Congress
IFAC
,
Seoul, Korea
, July 6–11, pp.
15185
15190
.10.3182/20080706-5-KR-1001.02568
20.
Hong
,
Y. G.
, and
Jiang
,
Z. P.
,
2006
, “
Finite-Time Stabilization of Nonlinear Systems With Parametric and Dynamic Uncertainties
,”
IEEE Trans. Autom. Control
,
51
(
12
), pp.
1950
1956
.10.1109/TAC.2006.886515
21.
Abdessameud
,
A.
, and
Tayebi
,
A.
,
2008
, “
Decentralized Attitude Alignment Control of Spacecraft Within a Formation Without Angular Velocity Measurements
,”
17th World Congress
IFAC
,
Seoul, Korea
, July 6–11, pp.
1766
1771
.10.3182/20080706-5-KR-1001.00302
22.
Zou
,
A. M.
,
Kumar
,
K. D.
, and
Hou
,
Z. G.
,
2010
, “
Quaternion-Based Adaptive Output Feedback Attitude Control of Spacecraft Using Chebyshev Neural Networks
,”
IEEE Trans. Neural Networks
,
21
(
9
), pp.
1457
1471
.10.1109/TNN.2010.2050333
23.
Zou
,
A. M.
,
Kumar
,
K. D.
,
Hou
,
Z. G.
, and
Liu
,
X.
,
2011
, “
Finite-Time Attitude Tracking Control for Spacecraft Using Terminal Sliding Mode and Chebyshev Neural Network
,”
IEEE Trans. Syst. Man Cybern., B
,
41
(
4
), pp.
950
963
.10.1109/TSMCB.2010.2101592
24.
Zheng
,
Y. S.
,
Zhu
,
Y. R.
, and
Wang
,
L.
,
2014
, “
Finite-Time Consensus of Multiple Second-Order Dynamic Agents Without Velocity Measurements
,”
Int. J. Syst. Sci.
,
45
(
3
), pp.
579
588
.10.1080/00207721.2012.724108
25.
Zhao
,
Y.
,
Duan
,
Z. S.
,
Wen
,
G. H.
, and
Zhang
,
Y. J.
,
2013
, “
Distributed Finite-Time Tracking Control for Multi-Agent Systems: An Observer-Based Approach
,”
Syst. Control Lett.
,
62
(
1
), pp.
22
28
.10.1016/j.sysconle.2012.10.012
26.
Du
,
H. B.
,
Li
,
S. H.
, and
Lin
,
X. Z.
,
2013
, “
Finite-Time Formation Control of Multiagent Systems via Dynamic Output Feedback
,”
Int. J. Robust Nonlinear Control
,
23
(
14
), pp.
1609
1628
.10.1002/rnc.2849
27.
Zou
,
A. M.
,
2014
, “
Finite-Time Output Feedback Attitude Tracking Control for Rigid Spacecraft
,”
IEEE Trans. Control Syst. Technol.
,
22
(
1
), pp.
338
345
.10.1109/TCST.2013.2246836
28.
Du
,
H. B.
, and
Li
,
S. H.
,
2013
, “
Semi-Global Finite-Time Attitude Stabilization by Output Feedback for a Rigid Spacecraft
,”
Proc. Inst. Mech. Eng., Part G
,
227
(
12
), pp.
1881
1891
.10.1177/0954410012464454
29.
Lu
,
X. Q.
,
Chen
,
S. H.
, and
Lv
,
J. H.
,
2013
, “
Finite-Time Tracking for Double-Integrator Multi-Agent Systems With Bounded Control Input
,”
IET Control Theory Appl.
,
7
(
11
), pp.
1562
1573
.10.1049/iet-cta.2013.0013
30.
Du
,
H. B.
, and
Li
,
S. H.
,
2012
, “
Finite-Time Attitude Stabilization for a Spacecraft Using Homogeneous Method
,”
J. Guid. Control Dyn.
,
35
(
3
), pp.
740
748
.10.2514/1.56262
31.
Wen
,
J. T. Y.
, and
Delgado
,
K. K.
,
1991
, “
The Attitude Control Problem
,”
IEEE Trans. Autom. Control
,
36
(
10
), pp.
1148
1162
.10.1109/9.90228
32.
Chen
,
G.
, and
Lewis
,
F. L.
,
2011
, “
Distributed Adaptive Tracking Control for Synchronization of Unknown Networked Lagrangian Systems
,”
IEEE Trans. Syst. Man Cybern., B
,
41
(
3
), pp.
805
816
.10.1109/TSMCB.2010.2095497
33.
Godsil
,
C.
, and
Royle
,
G.
,
2001
,
Algebraic Graph Theory
(Graduate Texts in Mathematics, Vol.
207
),
Springer
,
New York
.10.1007/978-1-4613-0163-9
34.
Hong
,
Y. G.
,
Hu
,
J. P.
, and
Gao
,
L. X.
,
2006
, “
Tracking Control for Multi-Agent Consensus With an Active Leader and Variable Topology
,”
Automatica
,
42
(
7
), pp.
1177
1182
.10.1016/j.automatica.2006.02.013
35.
Zhao
,
Y.
,
Duan
,
Z. S.
, and
Wen
,
G. H.
,
2014
, “
Distributed Finite-Time Tracking of Multiple Euler–Lagrange Systems Without Velocity Measurements
,”
Int. J. Robust Nonlinear Control
.10.1002/rnc.3170
36.
Hong
,
Y. G.
,
Huang
,
J.
, and
Xu
,
Y. S.
,
2001
, “
On an Output Feedback Finite-Time Stabilization Problem
,”
IEEE Trans. Autom. Control
,
46
(
2
), pp.
305
309
.10.1109/9.905699
You do not currently have access to this content.